OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Toán 12 Ôn tập cuối năm phần Giải tích


Sau khi kết thúc tất cả bài học chương trình Giải tích 12, bài ôn tập cuối năm sẽ giúp các em có cái nhìn tổng quan về toàn bộ chương trình đã học. Từ đó sẽ có định hướng ôn tập và rèn luyện nhằm hướng đến kì thi THPT Quốc gia mà ở đó chương trình Toán 12 luôn chiếm tỉ trọng cao nhất về điểm số. Hy vọng các bảng tổng kết nội dung sau sẽ phần nào giúp được các em trong quá trình ôn tập, chúc các em học tập tốt và đạt kết quả cáo trong các kì thi.

ADMICRO/lession_isads=0
 
 

Tóm tắt lý thuyết

VIDEO
YOMEDIA
Trắc nghiệm hay với App HOC247
YOMEDIA

Bài tập minh họa

Bài tập 1: Cho hàm số: \(y=\frac{1}{3}x^3-mx^2+(m^2-m+1)x+1\). Tìm m để hàm số:

a) Có cực đại và cực tiểu. 
b) Đạt cực đại tại điểm x=1.

Lời giải:

TXĐ: \(D=\mathbb{R}.\) 

Đạo hàm: \(y'=x^2-2mx+m^2-m+1\).

a) Tìm m để hàm số có cực đại và cực tiểu.
Hàm số có cực đại và cực tiểu khi và chỉ khi: y'=0 có 2 nghiệm phân biệt.
Điều này xảy ra khi: \(\left\{\begin{matrix} a_{y'}\neq 0\\ \Delta '_{y'}>0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 1\neq 0\\ (-m)^2-(m^2-m+1)>0 \end{matrix}\right.\Leftrightarrow m-1>0\Leftrightarrow m>1\)
b) Tìm m để hàm số đạt cực tiểu tại điểm x = 1
\(y'=x^2-2mx+m^2-m+1\) và \(y''=2x-2m\)
Ta có: \(\left\{\begin{matrix} y'(1)=0\\ y''(1)<0 \end{matrix}\right. \ \ \Leftrightarrow \left\{\begin{matrix} m^2-3m+2=0\\ 2-2m<0 \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} m=1\vee m=2\\ m>1 \end{matrix}\right.\Leftrightarrow m=2\)
Thử lại với m=2 hàm số đạt cực đại tại x=1.

Bài tập 2:

Cho \(\log_{3}5=a\). Tính \(\log_{75}45\) theo a.

Lời giải:

\(\log_{75}45=\frac{\log_{3}45}{\log_{3}75}=\frac{\log_{3}(3^{2}.5)}{\log_{3}(3.5^{2})}\)\(=\frac{log_{3}3^{2}+log_{3}5}{log_{3}3+log_{3}5^{2}}=\frac{2+log_{3}5}{1+2log_{3}5}\)\(=\frac{2+a}{1+2a}\).

Bài tập 3:

Một người gửi tiết kiệm ngân hàng với lãi suất 6,8%/năm và lãi hàng năm được nhập vào vốn. Cho biết số tiền cả gốc và lãi được tính theo công thức \(T=A(1+r)^n\), trong đó A là số tiền gửi, r là lãi suất và n là số kỳ hạn gửi. Hỏi sau bao nhiêu năm người đó thu được gấp đôi số tiền ban đầu?

Lời giải:

Sau n năm số tiền thu được là \(T=A(1+0,068)^n\)
Để T = 2A thì phải có \((1,068)^n=2 \ \ (hay \ (1+6,8\%)^n=2)\)
\(\Leftrightarrow n=log_{1,068}.2\approx 10,54\)
Vậy muốn thu được gấp đôi số tiền ban đầu, người đó phải gửi 11 năm.

Bài tập 4:

Giải phương trình \(\log_8\frac{8}{x^2}=3\log_8^2x.\)

Lời giải:

Điều kiện: \(\left\{ \begin{array}{l}
x > 0\\
{\log _8}\frac{8}{{{x^2}}} \ge 0
\end{array} \right. \Leftrightarrow 0 < x < 2\sqrt 2 .\)

\(\log_8\frac{8}{x^2}=3\log_8^2x\Leftrightarrow \log_88 -\log_8x^2=3.\log_8^2x\)
\(\Leftrightarrow 3\log_8^2x+2\log_8x^2-1=0\)
Đặt \(t=\log_8x\), phương trình trở thành: \(3{t^2} + 2t - 1 = 0 \Leftrightarrow \left[ \begin{array}{l} t = - 1\\ t = \frac{1}{3} \end{array} \right.\)
Với: \(t=-1\Leftrightarrow log_8x=-1\Leftrightarrow x=\frac{1}{8}\)
Với: \(t=\frac{1}{3}\Leftrightarrow log_8x=\frac{1}{3}\Leftrightarrow x=2\)
Vậy tập nghiệm phương trình là: \(\left \{ \frac{1}{8};2 \right \}\).

Bài tập 5: 

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 + x, trục hoành và hai đường thẳng x = 0, x = 1.

Lời giải:

Diện tích hình phẳng cần tính là: \(S=\int_{0}^{1}\left | x^2+x \right |dx\)
Với \(x\in [0;1]\Rightarrow S=\int_{0}^{1}(x^2+x)dx\)
Suy ra \(S=(\frac{x^3}{3}+\frac{x^2}{2})\bigg |^1_0=\frac{5}{6}.\)
Vậy \(S=\frac{5}{6}\).

Bài tập 6:

Cho hình phẳng giới hạn bởi các đường \(y = \frac{1}{{1 + \sqrt {4 - 3{\rm{x}}} }},y = 0,x = 0,x = 1\) quay quanh trục Ox. Tính thể tích V của khối tròn xoay tạo thành.

Lời giải:

Thể tích cần tìm: \(V = \pi \int\limits_0^1 {\frac{{dx}}{{{{\left( {1 + \sqrt {4 - 3x} } \right)}^2}}}}\)

Đặt:\(t = \sqrt {4 - 3x} \Rightarrow dt = - \frac{3}{{2\sqrt {4 - 3x} }}dx \Leftrightarrow dx = - \frac{2}{3}tdt\left( {x = 0 \Rightarrow t = 2;x = 1 \Rightarrow t = 1} \right)\)

Khi đó: 

\(\begin{array}{l} V = \frac{{2\pi }}{3}\int\limits_1^2 {\frac{t}{{{{\left( {1 + t} \right)}^2}}}dt} = \frac{{2\pi }}{3}\int\limits_1^2 {\left( {\frac{1}{{1 + t}} - \frac{1}{{{{\left( {1 + t} \right)}^2}}}} \right)dt} \\ = \left. {\frac{{2\pi }}{3}\left( {\ln \left| {1 + t} \right| + \frac{1}{{1 + t}}} \right)} \right|_1^2 = \frac{\pi }{9}\left( {6\ln \frac{3}{2} - 1} \right). \end{array}\)

Bài tập 7:

Cho số phức z thỏa mãn điều kiện \((1+2i)z+(3+2i)\bar{z}=4+10i.\) Tìm môđun của số phức \(w=z+2\bar{z}.\)

Lời giải:

Đặt \(z=a+bi(a,b\in R)\Rightarrow \bar{z}=a-bi\)
Ta có \((1+2i)z+(3+2i)\bar{z}=4+10i\)
\(\Leftrightarrow (1+2i)(a+bi)+(3+2i)(a-bi)(a-bi)=4+10i\)
\(\Leftrightarrow 4a+(4a-2b)i=4+10i\Leftrightarrow \left\{\begin{matrix} 4a=4\\ 4a-2b=10 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=1\\ b=-3 \end{matrix}\right.\)
Do đó \(z= 1- 3i.\)
Ta có: \(w=z+2\bar{z}=1-3i+2(1+3i)=3+3i.\)
Suy ra môđun của w là \(\left | w \right |=\sqrt{3^2+3^2}=3\sqrt{2}.\)

ADMICRO

3. Luyện tập Ôn tập cuối năm giải tích 12

Sau khi kết thúc tất cả bài học chương trình Giải tích 12, bài ôn tập cuối năm sẽ giúp các em có cái nhìn tổng quan về toàn bộ chương trình đã học. Từ đó sẽ có định hướng ôn tập và rèn luyện nhằm hướng đến kì thi THPT Quốc gia mà ở đó chương trình Toán 12 luôn chiếm tỉ trọng cao nhất về điểm số. Hy vọng các bảng tổng kết nội dung sau sẽ phần nào giúp được các em trong quá trình ôn tập, chúc các em học tập tốt và đạt kết quả cáo trong các kì thi.

3.1 Trắc nghiệm

Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Ôn tập cuối năm - Toán 12 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2 Bài tập SGK

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Ôn tập cuối năm - Toán 12 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.

Bài tập 1 trang 145 SGK Giải tích 12

Bài tập 2 trang 145 SGK Giải tích 12

Bài tập 3 trang 145 SGK Giải tích 12

Bài tập 4 trang 145 SGK Giải tích 12

Bài tập 5 trang 145 SGK Giải tích 12

Bài tập 6 trang 145 SGK Giải tích 12

Bài tập 7 trang 145 SGK Giải tích 12

Bài tập 8 trang 145 SGK Giải tích 12

Bài tập 9 trang 145 SGK Giải tích 12

Bài tập 10 trang 145 SGK Giải tích 12

Bài tập 1 trang 145 SGK Giải tích 12

Bài tập 2 trang 145 SGK Giải tích 12

Bài tập 3 trang 146 SGK Giải tích 12

Bài tập 4 trang 146 SGK Giải tích 12

Bài tập 5 trang 146 SGK Giải tích 12

Bài tập 6 trang 146 SGK Giải tích 12

Bài tập 7 trang 146 SGK Giải tích 12

Bài tập 8 trang 147 SGK Giải tích 12

Bài tập 9 trang 147 SGK Giải tích 12

Bài tập 10 trang 147 SGK Giải tích 12

Bài tập 11 trang 147 SGK Giải tích 12

Bài tập 12 trang 147 SGK Giải tích 12

Bài tập 13 trang 148 SGK Giải tích 12

Bài tập 14 trang 148 SGK Giải tích 12

Bài tập 15 trang 148 SGK Giải tích 12

Bài tập 16 trang 148 SGK Giải tích 12

Bài tập 1 trang 211 SGK Toán 12 NC

Bài tập 2 trang 211 SGK Toán 12 NC

Bài tập 3 trang 211 SGK Toán 12 NC

Bài tập 4 trang 212 SGK Toán 12 NC

Bài tập 5 trang 212 SGK Toán 12 NC

Bài tập 6 trang 212 SGK Toán 12 NC

Bài tập 7 trang 212 SGK Toán 12 NC

Bài tập 8 trang 212 SGK Toán 12 NC

Bài tập 9 trang 212 SGK Toán 12 NC

Bài tập 11 trang 213 SGK Toán 12 NC

Bài tập 12 trang 213 SGK Toán 12 NC

Bài tập 13 trang 213 SGK Toán 12 NC

Bài tập 14 trang 213 SGK Toán 12 NC

Bài tập 15 trang 213 SGK Toán 12 NC

Bài tập 16 trang 213 SGK Toán 12 NC

Bài tập 17 trang 213 SGK Toán 12 NC

Bài tập 18 trang 214 SGK Toán 12 NC

Bài tập 19 trang 214 SGK Toán 12 NC

Bài tập 20 trang 214 SGK Toán 12 NC

Bài tập 21 trang 214 SGK Toán 12 NC

Bài tập 22 trang 214 SGK Toán 12 NC

Bài tập 23 trang 214 SGK Toán 12 NC

Bài tập 24 trang 214 SGK Toán 12 NC

Bài tập 25 trang 215 SGK Toán 12 NC

Bài tập 26 trang 214 SGK Toán 12 NC

Bài tập 27 trang 215 SGK Toán 12 NC

Bài tập 28 trang 215 SGK Toán 12 NC

Bài tập 29 trang 215 SGK Toán 12 NC

Bài tập 30 trang 215 SGK Toán 12 NC

Bài tập 31 trang 216 SGK Toán 12 NC

Bài tập 32 trang 216 SGK Toán 12 NC

Bài tập 33 trang 216 SGK Toán 12 NC

Bài tập 34 trang 216 SGK Toán 12 NC

Bài tập 35 trang 216 SGK Toán 12 NC

Bài tập 36 trang 217 SGK Toán 12 NC

Bài tập 37 trang 217 SGK Toán 12 NC

Bài tập 38 trang 217 SGK Toán 12 NC

Bài tập 1 trang 216 SBT Toán 12

Bài tập 2 trang 216 SBT Toán 12

Bài tập 3 trang 216 SBT Toán 12

Bài tập 4 trang 216 SBT Toán 12

Bài tập 5 trang 216 SBT Toán 12

Bài tập 6 trang 216 SBT Toán 12

Bài tập 7 trang 216 SBT Toán 12

Bài tập 8 trang 217 SBT Toán 12

Bài tập 9 trang 217 SBT Toán 12

Bài tập 10 trang 217 SBT Toán 12

Bài tập 11 trang 217 SBT Toán 12

Bài tập 12 trang 218 SBT Toán 12

Bài tập 13 trang 218 SBT Toán 12

Bài tập 14 trang 218 SBT Toán 12

Bài tập 15 trang 218 SBT Toán 12

Bài tập 16 trang 218 SBT Toán 12

Bài tập 17 trang 218 SBT Toán 12

Bài tập 18 trang 219 SBT Toán 12

Bài tập 19 trang 219 SBT Toán 12

Bài tập 20 trang 219 SBT Toán 12

Bài tập 21 trang 219 SBT Toán 12

Bài tập 22 trang 219 SBT Toán 12

Bài tập 23 trang 220 SBT Toán 12

Bài tập 24 trang 220 SBT Toán 12

Bài tập 25 trang 220 SBT Toán 12

Bài tập 26 trang 220 SBT Toán 12

Bài tập 27 trang 220 SBT Toán 12

4. Hỏi đáp Ôn tập cuối năm giải tích 12

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

-- Mod Toán Học 12 HỌC247

NONE
OFF