Giải bài 6 tr 145 sách GK Toán GT lớp 12
Phát biểu các định lí về quy tắc logarit, công thức đổi cơ số của logarit.
Hướng dẫn giải chi tiết bài 6
Qui tắc tính lôgarit
Cho số thực \(a\) thỏa \(0< a\neq 1\), ta có các tính chất sau:
- Với \(b>0\): \(a^{\log_ab}=b\)
- Lôgarit của một tích:
- Với \(x_1,x_2>0\): \(\log_a(x_1.x_2)=\log_ax_1+\log_ax_2\)
- Mở rộng với \(x_1,x_2,..., x_n>0\): \(\log_a(x_1.x_2....x_n)=\log_ax_1+\log_ax_2+...+\log_ax_n\)
- Lôgarit của một thương
- Với \(x_1,x_2>0 :\ \log_a\frac{x_1}{x_2}=\log_ax_1-\log_ax_2\)
- Với \(x> 0: \log_a\frac{1}{x}=-\log_ax\)
- Lôgarit của một lũy thừa:
- Với \(b>0:\) \(\log_ab^x=x\log_ab\)
- \(\forall x\): \(\log_aa^x=x\)
Công thức đổi cơ số:
Cho số thực \(a\) thỏa \(0< a\neq 1\), ta có các tính chất sau:
- Với \(0<c\neq 1,b>0:\) \(\log_ab=\frac{\log_c \ b}{\log_c \ a}\)
Lấy \(0 < b \ne 1\), chọn \(c=b\) ta có: \({\log _a}b = \frac{1}{{{{\log }_b}a}}\)
- Với \(\alpha \neq 0,b>0\): \(\log_{a^\alpha }b^\beta =\frac{\beta }{\alpha }\log_ab\)
- Với \(\alpha \neq 0, b>0:\) \(\log_{a^\alpha }b=\frac{1}{\alpha }\log_ab\)
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 4 trang 145 SGK Giải tích 12
Bài tập 5 trang 145 SGK Giải tích 12
Bài tập 7 trang 145 SGK Giải tích 12
Bài tập 8 trang 145 SGK Giải tích 12
Bài tập 9 trang 145 SGK Giải tích 12
Bài tập 10 trang 145 SGK Giải tích 12
Bài tập 1 trang 145 SGK Giải tích 12
Bài tập 2 trang 145 SGK Giải tích 12
Bài tập 3 trang 146 SGK Giải tích 12
Bài tập 4 trang 146 SGK Giải tích 12
Bài tập 5 trang 146 SGK Giải tích 12
Bài tập 6 trang 146 SGK Giải tích 12
Bài tập 7 trang 146 SGK Giải tích 12
Bài tập 8 trang 147 SGK Giải tích 12
Bài tập 9 trang 147 SGK Giải tích 12
Bài tập 10 trang 147 SGK Giải tích 12
Bài tập 11 trang 147 SGK Giải tích 12
Bài tập 12 trang 147 SGK Giải tích 12
Bài tập 13 trang 148 SGK Giải tích 12
Bài tập 14 trang 148 SGK Giải tích 12
Bài tập 15 trang 148 SGK Giải tích 12
Bài tập 16 trang 148 SGK Giải tích 12
Bài tập 1 trang 211 SGK Toán 12 NC
Bài tập 2 trang 211 SGK Toán 12 NC
Bài tập 3 trang 211 SGK Toán 12 NC
Bài tập 4 trang 212 SGK Toán 12 NC
Bài tập 5 trang 212 SGK Toán 12 NC
Bài tập 6 trang 212 SGK Toán 12 NC
Bài tập 7 trang 212 SGK Toán 12 NC
Bài tập 8 trang 212 SGK Toán 12 NC
Bài tập 9 trang 212 SGK Toán 12 NC
Bài tập 11 trang 213 SGK Toán 12 NC
Bài tập 12 trang 213 SGK Toán 12 NC
Bài tập 13 trang 213 SGK Toán 12 NC
Bài tập 14 trang 213 SGK Toán 12 NC
Bài tập 15 trang 213 SGK Toán 12 NC
Bài tập 16 trang 213 SGK Toán 12 NC
Bài tập 17 trang 213 SGK Toán 12 NC
Bài tập 18 trang 214 SGK Toán 12 NC
Bài tập 19 trang 214 SGK Toán 12 NC
Bài tập 20 trang 214 SGK Toán 12 NC
Bài tập 21 trang 214 SGK Toán 12 NC
Bài tập 22 trang 214 SGK Toán 12 NC
Bài tập 23 trang 214 SGK Toán 12 NC
Bài tập 24 trang 214 SGK Toán 12 NC
Bài tập 25 trang 215 SGK Toán 12 NC
Bài tập 26 trang 214 SGK Toán 12 NC
Bài tập 27 trang 215 SGK Toán 12 NC
Bài tập 28 trang 215 SGK Toán 12 NC
Bài tập 29 trang 215 SGK Toán 12 NC
Bài tập 30 trang 215 SGK Toán 12 NC
Bài tập 31 trang 216 SGK Toán 12 NC
Bài tập 32 trang 216 SGK Toán 12 NC
Bài tập 33 trang 216 SGK Toán 12 NC
Bài tập 34 trang 216 SGK Toán 12 NC
Bài tập 35 trang 216 SGK Toán 12 NC
Bài tập 36 trang 217 SGK Toán 12 NC
Bài tập 37 trang 217 SGK Toán 12 NC
Bài tập 38 trang 217 SGK Toán 12 NC
Bài tập 1 trang 216 SBT Toán 12
Bài tập 2 trang 216 SBT Toán 12
Bài tập 3 trang 216 SBT Toán 12
Bài tập 4 trang 216 SBT Toán 12
Bài tập 5 trang 216 SBT Toán 12
Bài tập 6 trang 216 SBT Toán 12
Bài tập 7 trang 216 SBT Toán 12
Bài tập 8 trang 217 SBT Toán 12
Bài tập 9 trang 217 SBT Toán 12
Bài tập 10 trang 217 SBT Toán 12
Bài tập 11 trang 217 SBT Toán 12
Bài tập 12 trang 218 SBT Toán 12
Bài tập 13 trang 218 SBT Toán 12
Bài tập 14 trang 218 SBT Toán 12
Bài tập 15 trang 218 SBT Toán 12
Bài tập 16 trang 218 SBT Toán 12
Bài tập 17 trang 218 SBT Toán 12
Bài tập 18 trang 219 SBT Toán 12
Bài tập 19 trang 219 SBT Toán 12
Bài tập 20 trang 219 SBT Toán 12
Bài tập 21 trang 219 SBT Toán 12
Bài tập 22 trang 219 SBT Toán 12
Bài tập 23 trang 220 SBT Toán 12
Bài tập 24 trang 220 SBT Toán 12
Bài tập 25 trang 220 SBT Toán 12
-
Cho tích phân \(\int\limits_1^5 {\left| {\dfrac{{x - 2}}{{x + 1}}} \right|dx = a + b\ln 2 + c\ln 3} \) với a, b, c là các số nguyên. Hãy tính \(P = abc\).
bởi Lan Anh 09/05/2022
Theo dõi (0) 1 Trả lời -
Thực hiện tìm mô đun của số phức z biết \(\left( {2z - 1} \right)\left( {1 + i} \right) + \left( {\overline z + 1} \right)\left( {1 - i} \right) = 2 - 2i\) .
bởi thi trang 08/05/2022
Theo dõi (0) 1 Trả lời -
Hãy tìm giá trị thực của tham số \(m\)để đường thẳng \(d:y = x - m + 2\) cắt đồ thị hàm số \(y = \dfrac{{2x}}{{x - 1}}\)\(\left( C \right)\) tại hai điểm phân biệt \(A\) và \(B\) sao cho độ dài \(AB\) ngắn nhất.
bởi Quế Anh 08/05/2022
Theo dõi (0) 1 Trả lời -
Hãy tìm m để phương trình \({\log _2}^2x - {\log _2}{x^2} + 3 = m\) có nghiệm \(x \in {\rm{[}}1;8]\) =.
bởi hồng trang 09/05/2022
Theo dõi (0) 1 Trả lời -
ADMICRO
Cho biết có bao nhiêu giá trị nguyên của m để bất phương trình \({\log _2}\left( {7{x^2} + 7} \right) \ge {\log _2}\left( {m{x^2} + 4x + m} \right)\) nghiệm đúng với mọi x.
bởi Hoàng My 08/05/2022
Theo dõi (0) 1 Trả lời -
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 5\). Hãy tính tích phân\(I = \int\limits_0^1 {f'\left( x \right){e^{f\left( x \right)}}{\rm{d}}x} \).
bởi Tra xanh 08/05/2022
Theo dõi (0) 1 Trả lời -
Cho biết có bao nhiêu số phức z thỏa mãn điều kiện \(\left| {z + i\sqrt 5 } \right| + \left| {z - i\sqrt 5 } \right| = 6\), biết z có mô đun bằng \(\sqrt 5 \)?
bởi Sasu ka 08/05/2022
Theo dõi (0) 1 Trả lời -
Một ô tô đang chạy với vận tốc 20 m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 10t + 20\)(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Cho biết từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét ?
bởi thủy tiên 09/05/2022
Theo dõi (0) 1 Trả lời -
Hãy tìm số nghiệm nguyên của bất phương trình \({6^x} + 4 \le {2^{x + 1}} + {2.3^x}\)
bởi Nguyễn Hạ Lan 09/05/2022
Theo dõi (0) 1 Trả lời -
Lớp 11A có 2 tổ. Tổ I có 5 bạn nam, 3 bạn nữ và tổ II có 4 bạn nam, 4 bạn nữ. Lấy ngẫu nhiên mỗi tổ 2 bạn đi lao động. Thực hiện tính xác suất để trong các bạn đi lao động có đúng 3 bạn nữ.
bởi Nguyễn Thị Lưu 09/05/2022
Theo dõi (0) 1 Trả lời -
Gọi \(z_1, z_2\) là các nghiệm của phương trình \({z^2} - 2z + 5 = 0\) . Hãy tính \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) .
bởi Huong Hoa Hồng 09/05/2022
Theo dõi (0) 1 Trả lời -
Hãy tìm tập hợp điểm biểu diễn số phức z thỏa mãn \(\left| {z - i} \right| = \left| {(1 + i)z} \right|\) .
bởi Đan Nguyên 09/05/2022
Theo dõi (0) 1 Trả lời -
Gọi \(x_1, x_2\) là hai nghiệm của phương trình \({4^{{x^2} - x}} + {2^{{x^2} - x + 1}} = 3\). Hãy tính \(\left| {{x_1} - {x_2}} \right|\)
bởi Phung Thuy 09/05/2022
Theo dõi (0) 1 Trả lời -
Thực hiện tìm tập xác định của hàm số \(y = {({x^2} - 3x + 2)^\pi }\) .
bởi Nguyễn Trung Thành 08/05/2022
Theo dõi (0) 1 Trả lời -
Đồ thị hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) có hai điểm cực trị A và B. Cho biết điểm nào dưới đây thuộc đường thẳng AB ?
bởi Lan Anh 09/05/2022
A. \(M\left( {0; - 1} \right)\)
B. \(Q\left( { - 1;10} \right)\)
C. \(P\left( {1;0} \right)\)
D. \(N\left( {1; - 10} \right)\)
Theo dõi (0) 1 Trả lời -
Biết tập nghiệm của bất phương trình sau \(\sqrt {{x^2} - 3x - 10} < x - 2\) có dạng \(\left[ {a;b} \right)\). Tính \(A = a + b\).
bởi An Nhiên 08/05/2022
Theo dõi (0) 1 Trả lời -
Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = x{\left( {x + 1} \right)^2}{\left( {x - 2} \right)^4}\) với mọi \(x \in \mathbb{R}\). Tìm số điểm cực trị của hàm số \(f\)
bởi Lan Anh 08/05/2022
Theo dõi (0) 1 Trả lời -
Cho biết phương trình \(\sin x = \cos x\) có số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\)
bởi Tram Anh 09/05/2022
Theo dõi (0) 1 Trả lời