OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 21 trang 219 SBT Toán 12

Bài tập 21 trang 219 SBT Toán 12

Chứng minh rằng:

a) \(i + {i^2} + {i^3} + ... + {i^{99}} + {i^{100}} = 0\)

b) \(\displaystyle {{(\sqrt 2  + i)(1 - i)(1 + i)} \over i} = 2 - 2\sqrt 2 i\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài tập 21 trang 219

a) Biến đổi vế trái bằng cách nhóm từng bốn số hạng và đặt thừa số chung, ta được

\(i(1 + i + {i^2} + {i^3}) + ... + {i^{97}}(1 + i + {i^2} + {i^3})\)

\(= (1 + i + {i^2} + {i^3})(i + ... + {i^{97}}) = 0\),

Vì \(1 + i + {i^2} + {i^3} = 1 + i - 1 - i = 0\)

b) Ta có

\(\displaystyle  {{(\sqrt 2  + i)(1 - i)(1 + i)} \over i} \)

\(\begin{array}{l}
= \dfrac{{\left( {\sqrt 2 + i} \right)\left( {1 - {i^2}} \right)}}{i}\\
= \dfrac{{\left( {\sqrt 2 + i} \right).\left( {1 + 1} \right)}}{i}\\
= \dfrac{{\left( {\sqrt 2 + i} \right).2i}}{{{i^2}}}\\
= \dfrac{{2\sqrt 2 i + 2{i^2}}}{{ - 1}}\\
= - 2\sqrt 2 i + 2\\
= 2 - 2\sqrt 2 i
\end{array}\)

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 21 trang 219 SBT Toán 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF