Giải bài 3 tr 43 sách GK Toán GT lớp 12
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số phân thức:
a) \(y=\frac{x+3}{x-1}\).
b) \(y=\frac{1-2x}{2x-4}\).
c) \(y=\frac{-x+2}{2x+1}\).
Hướng dẫn giải chi tiết bài 3
Phương pháp giải:
Xét hàm số phân thức: \(y = \frac{{ax + b}}{{cx + d}}\;(c \ne 0,\;ad - bc \ne 0)\)
- Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{{ - d}}{c}} \right\}.\)
- Sự biến thiên
+ Tính đạo hàm \(y' = \left( {\frac{{ax + b}}{{cx + d}}} \right)' = \frac{{a{\rm{d - bc}}}}{{{{{\rm{(cx + d)}}}^{\rm{2}}}}}\).
+ y’ không xác định khi \(x = \frac{{ - d}}{c}\); y’ luôn âm (hoặc dương) với mọi \(x \ne \frac{{ - d}}{c}\)
+ Hàm số đồng biến (nghịch biến) trên các khoảng \(( - \infty ; - \frac{d}{c})\) và \((-\frac{d}{c}; + \infty )\)
+ Cực trị: Hàm số không có cực trị.
- Tiệm cận:
+ \(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{{\rm{ax + b}}}}{{{\rm{cx + d}}}} = \frac{a}{c}\) nên đường thẳng \(y = \frac{a}{c}\) là tiệm cận ngang.
+ \(\mathop {\lim }\limits_{x \to {{\frac{{ - d}}{c}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{{ - d}}{c}}^ - }} \frac{{{\rm{ax + b}}}}{{{\rm{cx + d}}}} = ( \pm )\infty\) ;
\(\mathop {\lim }\limits_{x \to {{\frac{{ - d}}{c}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{{ - d}}{c}}^ + }} \frac{{{\rm{ax + b}}}}{{{\rm{cx + d}}}} = ( \pm )\infty\) nên đường thẳng \(x = \frac{{ - d}}{c}\) là tiệm cận đứng.
- Lập bảng biến thiên: Thể hiện đầy đủ và chính xác các giá trị trên bảng biến thiên.
- Đồ thị:
+ Giao của đồ thị với trục Oy: x = 0 ⇒ y = \(\frac{b}{d}\) => (0; \(\frac{b}{d}\)).
+ Giao của đồ thị với trục Ox: \(y = 0 \Leftrightarrow \frac{{{\rm{ax + b}}}}{{{\rm{cx + d}}}} = 0 \Rightarrow ax + b = 0 \)
\(\Leftrightarrow x = \frac{{ - b}}{a} \Rightarrow (\frac{{ - b}}{a};0)\).
+ Lấy thêm một số điểm (nếu cần) - điều này làm sau khi hình dung hình dạng của đồ thị. Thiếu bên nào học sinh lấy điểm phía bên đó, không lấy tùy tiện mất thời gian.)
+ Nhận xét về đặc trưng của đồ thị. Đồ thị nhận điểm \(I(\frac{{ - d}}{c};\frac{a}{c})\) là giao hai đường tiệm cận làm tâm đối xứng.
Lời giải:
Vận dụng các bước trên ta giải các câu a, b, c bài 3 như sau:
Câu a:
Xét hàm số \(y=\frac{x+3}{x-1}\)
Tập xác định: \(D =\mathbb{R} \backslash \left\{ 1 \right\}\).
Đạo hàm: \(\small y' = {{ - 4} \over {{{(x - 1)}^2}}} < 0,\forall x \ne 1\).
Tiệm cận:
\(\small \mathop {\lim y}\limits_{x \to {1^ - }} = - \infty ;\mathop {\lim y}\limits_{x \to {1^ + }} = + \infty\)
nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
\(\small \mathop {\lim y}\limits_{x \to + \infty } = 1;\mathop {\lim y}\limits_{x \to - \infty } = 1\)
nên đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Bảng biến thiên:
Vậy hàm số nghịch biến trên các khoảng \(\small \left( { - \infty ;1} \right)\) và \(\small \left( {1; + \infty } \right).\)
Hàm số không có cực trị.
Đồ thị hàm số:
Đồ thị hàm số nhận điểm I(1;1) là giao điểm của hai đường tiệm cận làm tâm đối xứng.
Đồ thị hàm số cắt trục Ox tại điểm (-3;0), cắt Oy tại điểm (0;-3).
Nhận xét: vẫn chưa đủ điểm để vẽ đồ thị hàm số nên ta tiến hành lấy thêm 2 điểm đối xứng với (-3;0) và (0;-3) qua I(1;1) là các điểm (2;5) và (3;3).
Vậy ta có đồ thị hàm số:
Câu b:
Xét hàm số \(y=\frac{1-2x}{2x-4}\)
Tập xác định: \(D =\mathbb{R} \backslash \left\{ 2 \right\}\).
Đạo hàm: \(\small y' = {6 \over {{{\left( {2{\rm{x}} - 4} \right)}^2}}} > 0,\forall x \ne 2.\)
Tiệm cận:
\(\small \mathop {\lim y}\limits_{x \to {2^ - }} = + \infty ;\mathop {\lim y}\limits_{x \to {2^ + }} = - \infty\)
nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
\(\small \mathop {\lim y}\limits_{x \to + \infty } = -1;\mathop {\lim y}\limits_{x \to - \infty } = -1\)
nên đường thẳng y =- 1 là tiệm cận ngang của đồ thị hàm số.
Bảng biến thiên:
Hàm số đồng biến trên khoảng \(\small \left( { - \infty ;2} \right)\) và \(\small \left( {2; + \infty } \right)\).
Hàm số không có cực trị.
Đồ thị hàm số:
Đồ thị hàm số nhận điểm I(2;-1) làm tâm đối xứng.
Đồ thị hàm số cắt trục Ox tại \(\small \left ( \frac{1}{2};0 \right );\) cắt trục Oy tại \(\small \left (0;-\frac{1}{4} \right );\)
Ta lấy thêm một điểm thuộc nhánh còn lại để vẽ đồ thị hàm số: với x=3 suy ra \(\small y=\frac{5}{2}.\)
Đồ thị hàm số:
Câu c:
Xét hàm số \(y=\frac{-x+2}{2x+1}\)
Tập xác định: \(D =\mathbb{R} \backslash \left\{ -\frac{1}{2} \right\}\).
Đạo hàm: \(\small y' = {{ - 5} \over {{{\left( {2{\rm{x}} + 1} \right)}^2}}} < 0,\forall x \ne - {1 \over 2}\).
Tiệm cận:
\(\mathop {\lim y}\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ - }} = - \infty ;\mathop {\lim y}\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ - }} = + \infty\)
nên đường thẳng \(x=-\frac{1}{2}\) là tiệm cận đứng của đồ thị hàm số.
\(\small \mathop {\lim y}\limits_{x \to + \infty } = - \frac{1}{2};\mathop {\lim y}\limits_{x \to - \infty } = - \frac{1}{2}\) nên đường thẳng \(y=-\frac{1}{2}\)
là tiệm cận ngang của đồ thị hàm số.
Bảng biến thiên:
Hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - \frac{1}{2}} \right)\) và \(\left( { - \frac{1}{2}; + \infty } \right).\)
Hàm số không có cực trị.
Đồ thị:
Đồ thị hàm số nhận điểm \(I\left( { - \frac{1}{2}; -\frac{1}{2}} \right)\) làm tâm đối xứng.
Đồ thị hàm số cắt trục Ox tại điểm (2;0), cắt trục Oy tại điểm (0;). Ta lấy điểm (-1;-3) thuộc nhánh còn lại để thuận lợi hơn cho việc vễ đồ thị.
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 1 trang 43 SGK Giải tích 12
Bài tập 2 trang 43 SGK Giải tích 12
Bài tập 4 trang 43 SGK Giải tích 12
Bài tập 5 trang 44 SGK Giải tích 12
Bài tập 6 trang 44 SGK Giải tích 12
Bài tập 7 trang 44 SGK Giải tích 12
Bài tập 8 trang 44 SGK Giải tích 12
Bài tập 9 trang 44 SGK Giải tích 12
Bài tập 1.56 trang 36 SBT Toán 12
Bài tập 1.57 trang 36 SBT Toán 12
Bài tập 1.58 trang 36 SBT Toán 12
Bài tập 1.59 trang 36 SBT Toán 12
Bài tập 1.60 trang 36 SBT Toán 12
Bài tập 1.61 trang 36 SBT Toán 12
Bài tập 1.62 trang 37 SBT Toán 12
Bài tập 1.63 trang 37 SBT Toán 12
Bài tập 1.64 trang 37 SBT Toán 12
Bài tập 1.65 trang 37 SBT Toán 12
Bài tập 1.66 trang 38 SBT Toán 12
Bài tập 1.67 trang 38 SBT Toán 12
Bài tập 1.68 trang 38 SBT Toán 12
Bài tập 1.69 trang 38 SBT Toán 12
Bài tập 1.70 trang 38 SBT Toán 12
Bài tập 1.71 trang 39 SBT Toán 12
Bài tập 1.72 trang 39 SBT Toán 12
Bài tập 1.73 trang 39 SBT Toán 12
Bài tập 1.74 trang 39 SBT Toán 12
Bài tập 29 trang 27 SGK Toán 12 NC
Bài tập 30 trang 27 SGK Toán 12 NC
Bài tập 31 trang 27 SGK Toán 12 NC
Bài tập 32 trang 28 SGK Toán 12 NC
Bài tập 33 trang 28 SGK Toán 12 NC
Bài tập 40 trang 43 SGK Toán 12 NC
Bài tập 41 trang 44 SGK Toán 12 NC
Bài tập 42 trang 45 SGK Toán 12 NC
Bài tập 43 trang 44 SGK Toán 12 NC
Bài tập 44 trang 44 SGK Toán 12 NC
Bài tập 45 trang 44 SGK Toán 12 NC
Bài tập 46 trang 44 SGK Toán 12 NC
Bài tập 47 trang 45 SGK Toán 12 NC
Bài tập 48 trang 45 SGK Toán 12 NC
Bài tập 49 trang 49 SGK Toán 12 NC
Bài tập 50 trang 49 SGK Toán 12 NC
Bài tập 51 trang 49 SGK Toán 12 NC
Bài tập 52 trang 50 SGK Toán 12 NC
Bài tập 53 trang 50 SGK Toán 12 NC
Bài tập 54 trang 50 SGK Toán 12 NC
Bài tập 55 trang 50 SGK Toán 12 NC
Bài tập 56 trang 50 SGK Toán 12 NC
Bài tập 57 trang 55 SGK Toán 12 NC
Bài tập 58 trang 56 SGK Toán 12 NC
Bài tập 59 trang 56 SGK Toán 12 NC
Bài tập 60 trang 56 SGK Toán 12 NC
Bài tập 61 trang 56 SGK Toán 12 NC
Bài tập 62 trang 57 SGK Toán 12 NC
Bài tập 63 trang 57 SGK Toán 12 NC
Bài tập 64 trang 57 SGK Toán 12 NC
-
Xác định giao điểm của đồ thị hàm số \(y = \dfrac{{2x + 1}}{{2x - 1}}\) với đường thẳng \(y = x + 2\).
bởi Lê Thánh Tông 26/09/2022
Theo dõi (0) 1 Trả lời -
Cho biết phương trình tiếp tuyến của đồ thị hàm số sau \(y = {x^4} - 2{x^2} - 3\) song song với đường thẳng \(y = 24x - 1\)
bởi thuy linh 25/09/2022
Theo dõi (0) 1 Trả lời -
Cho biết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^4}-2{x^2}\) tại điểm có hoành độ \(x = - 2\) là:
bởi My Le 25/09/2022
Theo dõi (0) 1 Trả lời -
Thực hiện xác định giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3\left( {m - 1} \right){x^2} - 3\left( {m + 1} \right)x - 5\) có cực trị.
bởi Lê Tấn Thanh 25/09/2022
Theo dõi (0) 1 Trả lời -
ADMICRO
Hàm số sau \(y = {x^4} + \left( {{m^2} - 4} \right){x^2} + 5\) có ba cực trị khi nào?
bởi Hồng Hạnh 25/09/2022
Theo dõi (0) 1 Trả lời -
Hàm số \(y = {x^3} + \left( {m + 3} \right){x^2} + mx - 2\) đạt cực tiểu tại \(x = 1\) khi nào?
bởi Nguyễn Trọng Nhân 25/09/2022
Theo dõi (0) 1 Trả lời -
Cho biết hàm số: \(y = \dfrac{{4 - x}}{{2x + 3m}}\). Xét tính đơn điệu của hàm số đã cho.
bởi Đan Nguyên 25/09/2022
Theo dõi (0) 1 Trả lời