OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Xác định giao điểm của đồ thị hàm số \(y = \dfrac{{2x + 1}}{{2x - 1}}\) với đường thẳng \(y = x + 2\).

  bởi Lê Thánh Tông 26/09/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Hoành độ giao điểm của đồ thị hàm số \(y = \dfrac{{2x + 1}}{{2x - 1}}\) và \(y = x + 2\) là nghiệm của phương trình:

    \(\dfrac{{2x + 1}}{{2x - 1}} = x + 2\) (1)

    ĐK: \(2x - 1 \ne 0 \Leftrightarrow x \ne \frac{1}{2}\)

    \((1) \Rightarrow 2x + 1 = \left( {x + 2} \right)\left( {2x - 1} \right)\) \( \Leftrightarrow 2x + 1 = 2{x^2} + 3x - 2\) \( \Leftrightarrow 2{x^2} + x - 3 = 0\)

    \( \Leftrightarrow \left[ \begin{array}{l}x = 1(TM) \Rightarrow y = 3\\x =  - \dfrac{3}{2}(TM) \Rightarrow y = \dfrac{1}{2}\end{array} \right.\)

    Vậy giao điểm của đồ thị hàm số và đường thẳng là \(A\left( {1;3} \right)\) và \(B\left( { - \dfrac{3}{2};\dfrac{1}{2}} \right)\).

      bởi Mai Trang 26/09/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF