OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(x{{\log }_{3}}\left( x+1 \right)={{\log }_{9}}\left[ 9{{\left( x+1 \right)}^{2m}} \right]\) có hai nghiệm phân biệt.

A. \(m\in \left( -1\,;\,0 \right)\).                           

B. \(m\in \left( -2\,;\,0 \right)\).           

C. \(m\in \left( -1\,;\,+\infty  \right)\).                                 

D. \(m\in \left[ -1\,;\,0 \right)\).

  bởi Vu Thy 14/05/2023
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Điều kiện: \(x>-1\).

    Ta có pt: \(x{{\log }_{3}}\left( x+1 \right)={{\log }_{9}}\left[ 9{{\left( x+1 \right)}^{2m}} \right]\Leftrightarrow x{{\log }_{3}}\left( x+1 \right)=1+m{{\log }_{3}}\left( x+1 \right)\)

    \(\Leftrightarrow \left( x-m \right){{\log }_{3}}\left( x+1 \right)=1\) (1).

    Đặt: \({{\log }_{3}}\left( x+1 \right)=t\Rightarrow x={{3}^{t}}-1\)

    Ta có, Pt (1) \(\Rightarrow \left( {{3}^{t}}-m-1 \right).t=1\Rightarrow f\left( t \right)={{3}^{t}}-\frac{1}{t}-1=m\), với \(t\ne 0\).

    Đặt: \(f\left( t \right)={{3}^{t}}-\frac{1}{t}-1\), với \(t\ne 0\).

    \(\Rightarrow f'\left( t \right)={{3}^{t}}.\ln 3+\frac{1}{{{t}^{2}}}>0\,,\,t\in \left( -\infty \,;\,0 \right),\,\left( 0\,;\,+\infty  \right)\).

    Suy ra, \(f\left( t \right)={{3}^{t}}-\frac{1}{t}-1\) là hàm số đồng biến trên \(\left( -\infty \,;\,0 \right)\) và \(\left( 0\,;\,+\infty  \right)\).

    Ta xét các giới sau:

    \(\underset{t\to -\infty }{\mathop{\lim }}\,\left( {{3}^{t}}-\frac{1}{t}-1 \right)=-1\), \(\underset{t\to +\infty }{\mathop{\lim }}\,\left( {{3}^{t}}-\frac{1}{t}-1 \right)=+\infty \).

    \(\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\left( {{3}^{t}}-\frac{1}{t}-1 \right)=-\,\infty \), \(\underset{t\to {{0}^{-}}}{\mathop{\lim }}\,\left( {{3}^{t}}-\frac{1}{t}-1 \right)=+\,\infty \).

    Ta có bảng biến thiên của hàm số \(f\left( t \right)={{3}^{t}}-\frac{1}{t}-1\), với \(t\in \left( -\infty \,;\,0 \right),\,\left( 0\,;\,+\infty  \right)\).

    Ta có, số nghiệm của Pt (1) cũng chính là số nghiệm của đồ thị hàm số (C) \(f\left( t \right)={{3}^{t}}-\frac{1}{t}-1\)

    và đồ thị hàm số\(y=m\) (song song hoặc trùng với trục hoành).

    Dựa, vào đồ thị ở hình vẽ trên, để phương trình \(x{{\log }_{3}}\left( x+1 \right)={{\log }_{9}}\left[ 9{{\left( x+1 \right)}^{2m}} \right]\) có ba nghiệm khi \(m\in \left( -\,1;\,+\infty  \right)\).

      bởi Meo Thi 15/05/2023
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF