OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 1.63 trang 37 SBT Toán 12

Giải bài 1.63 tr 37 SBT Toán 12

Cho hàm số 

\(y = {x^3} - (m + 4){x^2} - 4x + m\)   (1)

a) Tìm các điểm mà đồ thị của hàm số (1) đi qua với mọi giá trị của m.

b) Chứng minh rằng với mọi giá trị của m, đồ thị của hàm số (1) luôn luôn có cực trị.

c) Khảo sát sự biến thiên và vẽ đồ thị (C) của (1) khi .

d) Xác định  để (C) cắt đường thẳng  tại ba điểm phân biệt

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a)

Ta có: \(y = {x^3} - (m + 4){x^2} - 4x + m\)

\(\begin{array}{l}
\Leftrightarrow y = {x^3} - m{x^2} - 4{x^2} - 4x + m\\
\Leftrightarrow y - {x^3} + m{x^2} + 4{x^2} + 4x - m = 0\\
\Leftrightarrow \left( {m{x^2} - m} \right) + y - {x^3} + 4{x^2} + 4x = 0
\end{array}\)

\( \Leftrightarrow \left( {{x^2} - 1} \right)m + y - {x^3} + 4{x^2} + 4x = 0\)

Đồ thị của hàm số (1) luôn luôn đi qua điểm \(A\left( {x;y} \right)\) với mọi \(m\) khi \(\left( {x;y} \right)\) là nghiệm của hệ phương trình:  \(\left\{ \begin{array}{l}{x^2} - 1 = 0\\y - {x^3} + 4{x^2} + 4x = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x =  \pm 1\\y = {x^3} - 4{x^2} - 4x\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 1,y =  - 7\\x =  - 1;y =  - 1\end{array} \right.\)

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm \(\left( {1; - 7} \right)\) và \(\left( { - 1; - 1} \right).\)

b) 

Ta có: \(y' = 3{x^2} - 2(m + 4)x - 4\); \(\Delta ' = {(m + 4)^2} + 12 > 0,\forall m\)

Do dó phương trình \(y' = 0\) luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó).

Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) 

Với \(m = 0\) ta được hàm số \(y = {x^3} - 4{x^2} - 4x\).

TXĐ: \(D = \mathbb{R}\)

Chiều biến thiên:

\(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ,\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty \)

Có \(y' = 3{x^2} - 8x - 4\), \(y' = 0 \Leftrightarrow x = \dfrac{{4 \pm 2\sqrt 7 }}{3}\)

Hàm số đồng biến trên các khoảng \(\left( { - \infty ;\frac{{4 - 2\sqrt 7 }}{3}} \right)\) và \(\left( {\frac{{4 + 2\sqrt 7 }}{3}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( {\frac{{4 - 2\sqrt 7 }}{3};\frac{{4 + 2\sqrt 7 }}{3}} \right)\)

Hàm số đạt cực đại tại \(x = \frac{{4 - 2\sqrt 7 }}{3}\), đạt cực tiểu tại \(x = \frac{{4 + 2\sqrt 7 }}{3}\)

Bảng biến thiên:

Đồ thị

d)

Với \(m = 0\) ta có:\(y = {x^3}-4{x^2}-4x\).

Xét phương trình hoành độ giao điểm: \({x^3}-4{x^2}-4x = kx\) (2)

Đường thẳng \(y = kx\) cắt (C) tại ba điểm phân biệt nếu phương trình (2) có ba nghiệm phân biệt.

\(\begin{array}{l}
\left( 2 \right) \Leftrightarrow {x^3} - 4{x^2} - 4x - kx = 0\\
\Leftrightarrow {x^3} - 4{x^2} - \left( {k + 4} \right)x = 0
\end{array}\) \( \Leftrightarrow x\left[ {{x^2} - 4x - \left( {k + 4} \right)} \right] = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 4x - \left( {k + 4} \right) = 0\,\,\left( 3 \right)\end{array} \right.\)

\(\left( 2 \right)\) có ba nghiệm phân biệt \( \Leftrightarrow \left( 3 \right)\) có hai nghiệm phân biệt khác \(0\)

\( \Leftrightarrow \left\{ \begin{array}{l}
\Delta ' = 4 + k + 4 > 0\\
{0^2} - 4.0 - \left( {k + 4} \right) \ne 0
\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} k + 8 > 0\\-k -4\ne  0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}k >  - 8\\k \ne  - 4\end{array} \right.\).

Vậy với \(k >  - 8\) và \(k \ne  - 4\) thì \(\left( C \right)\) cắt đường thẳng \(y = kx\) tại ba điểm phân biệt.

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1.63 trang 37 SBT Toán 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Bài tập 1.61 trang 36 SBT Toán 12

Bài tập 1.62 trang 37 SBT Toán 12

Bài tập 1.64 trang 37 SBT Toán 12

Bài tập 1.65 trang 37 SBT Toán 12

Bài tập 1.66 trang 38 SBT Toán 12

Bài tập 1.67 trang 38 SBT Toán 12

Bài tập 1.68 trang 38 SBT Toán 12

Bài tập 1.69 trang 38 SBT Toán 12

Bài tập 1.70 trang 38 SBT Toán 12

Bài tập 1.71 trang 39 SBT Toán 12

Bài tập 1.72 trang 39 SBT Toán 12

Bài tập 1.73 trang 39 SBT Toán 12

Bài tập 1.74 trang 39 SBT Toán 12

Bài tập 29 trang 27 SGK Toán 12 NC

Bài tập 30 trang 27 SGK Toán 12 NC

Bài tập 31 trang 27 SGK Toán 12 NC

Bài tập 32 trang 28 SGK Toán 12 NC

Bài tập 33 trang 28 SGK Toán 12 NC

Bài tập 40 trang 43 SGK Toán 12 NC

Bài tập 41 trang 44 SGK Toán 12 NC

Bài tập 42 trang 45 SGK Toán 12 NC

Bài tập 43 trang 44 SGK Toán 12 NC

Bài tập 44 trang 44 SGK Toán 12 NC

Bài tập 45 trang 44 SGK Toán 12 NC

Bài tập 46 trang 44 SGK Toán 12 NC

Bài tập 47 trang 45 SGK Toán 12 NC

Bài tập 48 trang 45 SGK Toán 12 NC

Bài tập 49 trang 49 SGK Toán 12 NC

Bài tập 50 trang 49 SGK Toán 12 NC

Bài tập 51 trang 49 SGK Toán 12 NC

Bài tập 52 trang 50 SGK Toán 12 NC

Bài tập 53 trang 50 SGK Toán 12 NC

Bài tập 54 trang 50 SGK Toán 12 NC

Bài tập 55 trang 50 SGK Toán 12 NC

Bài tập 56 trang 50 SGK Toán 12 NC

Bài tập 57 trang 55 SGK Toán 12 NC

Bài tập 58 trang 56 SGK Toán 12 NC

Bài tập 59 trang 56 SGK Toán 12 NC

Bài tập 60 trang 56 SGK Toán 12 NC

Bài tập 61 trang 56 SGK Toán 12 NC

Bài tập 62 trang 57 SGK Toán 12 NC

Bài tập 63 trang 57 SGK Toán 12 NC

Bài tập 64 trang 57 SGK Toán 12 NC

Bài tập 65 trang 58 SGK Toán 12 NC

Bài tập 66 trang 58 SGK Toán 12 NC

NONE
OFF