Giải bài 4 tr 26 sách GK Toán Hình lớp 12
Cho hình lăng trụ và hình chóp có cùng diện tích đáy và chiều cao bằng nhau. Tính tỉ số thể tích của chúng.
Hướng dẫn giải chi tiết bài 4
Gọi \(\displaystyle B\) là diện tích đáy và \(\displaystyle h\) là chiều cao của khối lăng trụ ta có:
\(\displaystyle V\)lăng trụ =\(\displaystyle B.h = V_{(H)}\)
Gọi \(\displaystyle B'\) là diện tích đáy và \(\displaystyle h'\) là chiều cao của khối chóp ta có:
\(B'=B\) ( cùng bằng diện tích tam giác \(ABC)\)
\(h'=h\) ( cùng bằng khoảng cách từ \(A'\) đến mp \(ABC\) )
\(\Rightarrow \displaystyle V\)chóp = \(\displaystyle {1\over 3}B'.h'={1\over 3}B.h = V_{(H')}\) (Vì diện tích đáy và chiều cao bằng nhau)
Vậy tỉ lệ thể tích giữa hình lăng trụ và hình chóp là: \(\displaystyle {{{V_{(H)}}} \over {{V_{(H')}}}} = 3.\)
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 2 trang 26 SGK Hình học 12
Bài tập 3 trang 26 SGK Hình học 12
Bài tập 5 trang 26 SGK Hình học 12
Bài tập 6 trang 26 SGK Hình học 12
Bài tập 7 trang 26 SGK Hình học 12
Bài tập 8 trang 26 SGK Hình học 12
Bài tập 9 trang 26 SGK Hình học 12
Bài tập 10 trang 27 SGK Hình học 12
Bài tập 11 trang 27 SGK Hình học 12
Bài tập 12 trang 27 SGK Hình học 12
Bài tập 1 trang 27 SGK Hình học 12
Bài tập 2 trang 27 SGK Hình học 12
Bài tập 3 trang 27 SGK Hình học 12
Bài tập 4 trang 28 SGK Hình học 12
Bài tập 5 trang 28 SGK Hình học 12
Bài tập 6 trang 28 SGK Hình học 12
Bài tập 7 trang 28 SGK Hình học 12
Bài tập 8 trang 28 SGK Hình học 12
Bài tập 9 trang 28 SGK Hình học 12
Bài tập 10 trang 28 SGK Hình học 12
Bài tập 1.18 trang 19 SBT Hình học 12
Bài tập 1.19 trang 19 SBT Hình học 12
Bài tập 1.20 trang 19 SBT Hình học 12
Bài tập 1.21 trang 19 SBT Hình học 12
Bài tập 1.22 trang 19 SBT Hình học 12
Bài tập 1.23 trang 19 SBT Hình học 12
Bài tập 1.24 trang 19 SBT Hình học 12
Bài tập 1.25 trang 19 SBT Hình học 12
Bài tập 1.26 trang 19 SBT Hình học 12
Bài tập 1.27 trang 20 SBT Hình học 12
Bài tập 1.28 trang 20 SBT Hình học 12
Bài tập 1.29 trang 20 SBT Hình học 12
Bài tập 1.30 trang 20 SBT Hình học 12
Bài tập 1.31 trang 20 SBT Hình học 12
Bài tập 1.32 trang 20 SBT Hình học 12
Bài tập 1.33 trang 20 SBT Hình học 12
Bài tập 1.34 trang 20 SBT Hình học 12
Bài tập 1.35 trang 20 SBT Hình học 12
Bài tập 1.36 trang 21 SBT Hình học 12
Bài tập 1.37 trang 21 SBT Hình học 12
Bài tập 1.38 trang 21 SBT Hình học 12
Bài tập 1.39 trang 21 SBT Hình học 12
Bài tập 1.40 trang 21 SBT Hình học 12
Bài tập 1.41 trang 21 SBT Hình học 12
Bài tập 1.42 trang 21 SBT Hình học 12
Bài tập 1.43 trang 21 SBT Hình học 12
Bài tập 1.44 trang 22 SBT Hình học 12
Bài tập 1.45 trang 22 SBT Hình học 12
Bài tập 1.46 trang 22 SBT Hình học 12
Bài tập 1.47 trang 22 SBT Hình học 12
Bài tập 1.48 trang 22 SBT Hình học 12
Bài tập 1.49 trang 22 SBT Hình học 12
Bài tập 1.50 trang 22 SBT Hình học 12
Bài tập 1.51 trang 23 SBT Hình học 12
Bài tập 1.52 trang 23 SBT Hình học 12
Bài tập 1.53 trang 23 SBT Hình học 12
Bài tập 1.54 trang 23 SBT Hình học 12
Bài tập 1.55 trang 23 SBT Hình học 12
Bài tập 1.56 trang 23 SBT Hình học 12
Bài tập 1.57 trang 24 SBT Hình học 12
Bài tập 1.58 trang 24 SBT Hình học 12
Bài tập 1.59 trang 24 SBT Hình học 12
Bài tập 1 trang 30 SGK Hình học 12 NC
Bài tập 2 trang 31 SGK Hình học 12 NC
Bài tập 3 trang 31 SGK Hình học 12 NC
Bài tập 4 trang 31 SGK Hình học 12 NC
Bài tập 5 trang 31 SGK Hình học 12 NC
Bài tập 6 trang 31 SGK Hình học 12 NC
Bài tập 1 trang 31 SGK Hình học 12 NC
Bài tập 2 trang 31 SGK Hình học 12 NC
Bài tập 3 trang 32 SGK Hình học 12 NC
Bài tập 4 trang 32 SGK Hình học 12 NC
Bài tập 5 trang 32 SGK Hình học 12 NC
Bài tập 6 trang 32 SGK Hình học 12 NC
Bài tập 7 trang 32 SGK Hình học 12 NC
Bài tập 8 trang 32 SGK Hình học 12 NC
Bài tập 9 trang 32 SGK Hình học 12 NC
Bài tập 10 trang 32 SGK Hình học 12 NC
Bài tập 11 trang 33 SGK Hình học 12 NC
Bài tập 12 trang 33 SGK Hình học 12 NC
Bài tập 13 trang 33 SGK Hình học 12 NC
Bài tập 14 trang 33 SGK Hình học 12 NC
Bài tập 15 trang 33 SGK Hình học 12 NC
Bài tập 16 trang 33 SGK Hình học 12 NC
Bài tập 17 trang 33 SGK Hình học 12 NC
Bài tập 18 trang 33 SGK Hình học 12 NC
Bài tập 19 trang 34 SGK Hình học 12 NC
Bài tập 20 trang 34 SGK Hình học 12 NC
Bài tập 21 trang 34 SGK Hình học 12 NC
Bài tập 22 trang 34 SGK Hình học 12 NC
Bài tập 23 trang 34 SGK Hình học 12 NC
Bài tập 24 trang 35 SGK Hình học 12 NC
Bài tập 25 trang 35 SGK Hình học 12 NC
Bài tập 26 trang 35 SGK Hình học 12 NC
Bài tập 27 trang 35 SGK Hình học 12 NC
Bài tập 28 trang 35 SGK Hình học 12 NC
Bài tập 29 trang 36 SGK Hình học 12 NC
Bài tập 30 trang 36 SGK Hình học 12 NC
-
Cho phép dời hình f . Biết rằng có một điểm I duy nhất sao cho f biến I thành chính nó, ngoài ra hợp thành của f với chính nó là phép đồng nhất. Chứng minh rằng f là phép đối xứng tâm.
bởi Nguyễn Thanh Hà 07/06/2021
Cho phép dời hình f . Biết rằng có một điểm I duy nhất sao cho f biến I thành chính nó, ngoài ra hợp thành của f với chính nó là phép đồng nhất. Chứng minh rằng f là phép đối xứng tâm.
Theo dõi (0) 1 Trả lời -
Chứng minh tổng các khoảng cách từ một điểm nằm trong một hình lăng trụ đều đến các mặt của nó không phụ thuộc vào vị trí của điểm nằm trong hình lăng trụ đó.
bởi Nguyễn Trung Thành 06/06/2021
Chứng minh tổng các khoảng cách từ một điểm nằm trong một hình lăng trụ đều đến các mặt của nó không phụ thuộc vào vị trí của điểm nằm trong hình lăng trụ đó.
Theo dõi (0) 1 Trả lời -
Khối chóp tứ giác đều S.ABCD. Một mặt phẳng \(\left( \alpha \right)\) đi qua A, B và trung điểm M của cạnh SC. Tính tỉ số thể tích của hai phần khối chóp bị phân chia bởi mặt phẳng đó.
bởi Trần Bảo Việt 07/06/2021
Khối chóp tứ giác đều S.ABCD. Một mặt phẳng \(\left( \alpha \right)\) đi qua A, B và trung điểm M của cạnh SC. Tính tỉ số thể tích của hai phần khối chóp bị phân chia bởi mặt phẳng đó.
Theo dõi (0) 1 Trả lời -
Khối chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm của AB, AD và SC. Chứng minh mặt phẳng \(\left( {MNP} \right)\) chia khối chóp thành hai phần có thể tích bằng nhau.
bởi Truc Ly 07/06/2021
Khối chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm của AB, AD và SC. Chứng minh mặt phẳng \(\left( {MNP} \right)\) chia khối chóp thành hai phần có thể tích bằng nhau.
Theo dõi (0) 2 Trả lời -
ADMICRO
Khối chóp S.ABCD có đáy là hình bình hành. Gọi B’, D’ lần lượt là trung điểm của SB, SD. Mặt phẳng \(\left( {AB'D'} \right)\) cắt SC tại C’. Tìm tỉ số thể tích của hai khối chóp S.AB’C’D’ và S.ABCD.
bởi Phan Quân 07/06/2021
Khối chóp S.ABCD có đáy là hình bình hành. Gọi B’, D’ lần lượt là trung điểm của SB, SD. Mặt phẳng \(\left( {AB'D'} \right)\) cắt SC tại C’. Tìm tỉ số thể tích của hai khối chóp S.AB’C’D’ và S.ABCD.
Theo dõi (0) 1 Trả lời -
Khối chóp tam giác đều \(S.ABC\) có chiều cao bằng h và góc ASB bằng \(2\varphi \). Hãy tính thể tích khối chóp.
bởi Nguyễn Xuân Ngạn 06/06/2021
Khối chóp tam giác đều \(S.ABC\) có chiều cao bằng h và góc ASB bằng \(2\varphi \). Hãy tính thể tích khối chóp.
Theo dõi (0) 1 Trả lời -
Tính thể tích của khối hộp nếu biết độ dài cạnh bên bằng a, diện tích hai mặt chéo lần lượt là \({S_1},{S_2}\) và góc giữa hai mặt chéo bằng \(\alpha \).
bởi Phung Meo 07/06/2021
Tính thể tích của khối hộp nếu biết độ dài cạnh bên bằng a, diện tích hai mặt chéo lần lượt là \({S_1},{S_2}\) và góc giữa hai mặt chéo bằng \(\alpha \).
Theo dõi (0) 1 Trả lời -
Cho khối lăng trụ ABC.A1B1C1 có đáy ABC là tam giác vuông cân với cạnh huyền AB bằng \(\sqrt 2 \). Cho biết mặt phẳng \(\left( {A{A_1}B} \right)\) vuông góc với mặt phẳng \(\left( {ABC} \right)\),\({\rm{A}}{{\rm{A}}_1} = \sqrt 3 \), góc \(\widehat {{A_1}AB}\) nhọn , góc giữa mặt phẳng \(\left( {{A_1}AC} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng 600. Hãy tính thể tích khối lăng trụ.
bởi Nguyễn Hồng Tiến 06/06/2021
Cho khối lăng trụ ABC.A1B1C1 có đáy ABC là tam giác vuông cân với cạnh huyền AB bằng \(\sqrt 2 \). Cho biết mặt phẳng \(\left( {A{A_1}B} \right)\) vuông góc với mặt phẳng \(\left( {ABC} \right)\),\({\rm{A}}{{\rm{A}}_1} = \sqrt 3 \), góc \(\widehat {{A_1}AB}\) nhọn , góc giữa mặt phẳng \(\left( {{A_1}AC} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng 600. Hãy tính thể tích khối lăng trụ.
Theo dõi (0) 1 Trả lời -
Cho khối lăng trụ tam giác ABC.A1B1C1 mà mặt bên ABB1A1 có diện tích bằng 4. Khoảng cách giữa cạnh CC1 và mặt \(\left( {AB{B_1}{A_1}} \right)\) bằng 7. Hãy tính thể tích khối lăng trụ.
bởi Bảo Hân 06/06/2021
Cho khối lăng trụ tam giác ABC.A1B1C1 mà mặt bên ABB1A1 có diện tích bằng 4. Khoảng cách giữa cạnh CC1 và mặt \(\left( {AB{B_1}{A_1}} \right)\) bằng 7. Hãy tính thể tích khối lăng trụ.
Theo dõi (0) 1 Trả lời -
Cho khối hộp \(ABCD.A'B'C'D'\)có đáy là hình chữ nhật với \(AB = \sqrt 3 \), \(AD = \sqrt 7 \). Hai mặt bên \(\left( {ABB'A'} \right)\) và \(\left( {ADD'A'} \right)\) lần lượt tạo với đáy những góc 450 và 600. Hãy tính thể tích khối hộp nếu biết cạnh bên bằng 1.
bởi thu hảo 07/06/2021
Cho khối hộp \(ABCD.A'B'C'D'\)có đáy là hình chữ nhật với \(AB = \sqrt 3 \), \(AD = \sqrt 7 \). Hai mặt bên \(\left( {ABB'A'} \right)\) và \(\left( {ADD'A'} \right)\) lần lượt tạo với đáy những góc 450 và 600. Hãy tính thể tích khối hộp nếu biết cạnh bên bằng 1.
Theo dõi (0) 1 Trả lời