Nếu các em gặp khó khăn hay có những bài tập hay muốn chia sẻ trong quá trình làm bài tập liên quan đến bài giảng Hình học 12 Ôn tập chương 1 Khối đa diện, hãy đặt câu hỏi ở đây cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.
Danh sách hỏi đáp (1017 câu):
-
Cho lăng trụ đứng có đáy là tam giác đều biết rằng tất cả các cạnh của lăng trụ bằng a. Tính thể tích và tổng diện tích các mặt bên của lăng trụ.
12/10/2021 | 2 Trả lời
Cho lăng trụ đứng có đáy là tam giác đều biết rằng tất cả các cạnh của lăng trụ bằng a. Tính thể tích và tổng diện tích các mặt bên của lăng trụ.Theo dõi (0)Gửi câu trả lời Hủy -
Cho hình chóp S.ABCD có đáy là một hình vuông cạnh a. Các mặt phẳng (SAB), (SAD) cùng vuông góc với mặt phẳng đáy , còn cạnh bên SC tạo với mặt phẳng đáy một góc 300. Tính thể tích của hình chóp đã cho bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A){{{a^3}\sqrt 6 } \over 9}; \cr & (B){{{a^3}\sqrt 6 } \over 3}; \cr & (C){{{a^3}\sqrt 6 } \over 4}; \cr & (D){{{a^3}\sqrt 3 } \over 9}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Hình chóp S.ABCD có đáy là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy, còn cạnh bên SC tạo với mặt phẳng (SAB) một góc \(30^0\). Thể tích của khối chóp đó bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A){{{a^3}\sqrt 3 } \over 3}; \cr & (B){{{a^3}\sqrt 2 } \over 4}; \cr & (C){{{a^3}\sqrt 2 } \over 2}; \cr & (D){{{a^3}\sqrt 2 } \over 3}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và có độ dài bằng a. Hãy tính thể tích khối tứ diện SBCD bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;{{{a^3}} \over 3}; \cr & (B)\;{{{a^3}} \over 4}; \cr & (C)\;{{{a^3}} \over 6}; \cr & (D)\;{{{a^3}} \over 8}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Với lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a, đường chéo AC’ tạo với mặt bên (BCC’B’) một góc \(\alpha \left( {0 < \alpha < {{45}^0}} \right)\). Khi đó, thể tích của khối lăng trụ bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;{a^3}\sqrt {{{\cot }^3}\alpha + 1} ; \cr & (B)\;{a^3}\sqrt {{{\cot }^3}\alpha - 1} ; \cr & (C)\;{a^3}\sqrt {\cos 2\alpha } ; \cr & (D)\;{a^3}\sqrt {{{\tan }^2}\alpha - 1} . \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Đường chéo của một hình hộp chữ nhật bằng d, góc giữa đường chéo và mặt đáy là \(\alpha \), góc nhọn giữa hai đường chéo của đáy bằng \(\beta \). Tính thể tích của hình hộp đó bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;{1 \over 2}{d^3}{\cos ^2}\alpha \sin \alpha \sin \beta ; \cr & (B)\;{1 \over 3}{d^3}{\cos ^2}\alpha \sin \alpha \sin \beta ; \cr & (C)\;{d^3}{\sin ^2}\alpha \cos \alpha \sin \beta ; \cr & (D)\;{1 \over 2}{d^3}{\sin ^2}\alpha \cos \alpha \sin \beta . \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Một hình chóp tam giác đều có cạnh đáy bằng a và các mặt bên tạo với mặt phẳng đáy một góc 600. Tính thể tích của hình chóp đó bằng:
06/06/2021 | 1 Trả lời
\(\eqalign{ & (A){{{a^3}\sqrt 3 } \over {24}}; \cr & (B){{{a^3}\sqrt 3 } \over 8}; \cr & (C){{{a^3}\sqrt 3 } \over 4}; \cr & (D){{{a^3}\sqrt 2 } \over 6}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Hình chóp tứ giác đều có cạnh đáy bằng a và cạnh bên bằng b. Khi đó thể tích của hình chóp bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A){1 \over 3}{a^2}\sqrt {{b^2} - 2{a^2}} ; \cr & (B){1 \over 6}{a^2}\sqrt {{b^2} - 2{a^2}} ; \cr & (C){1 \over 6}{a^2}\sqrt {4{b^2} - 2{a^2}} ; \cr & (D){2 \over 3}{a^2}\sqrt {2{b^2} - {a^2}} . \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hình chóp tứ giác đều có cạnh đáy bằng a và cạnh bên tạo với mặt phẳng đáy một góc \(60^0\). Tính thể tích của hình chóp đó bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A){{{a^3}\sqrt 6 } \over 2}; \cr & (B){{{a^3}\sqrt 6 } \over 3}; \cr & (C){{{a^3}\sqrt 3 } \over 2}; \cr & (D){{{a^3}\sqrt 6 } \over 6}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Với một hình chóp tứ giác đều có cạnh đáy bằng a và diện tích xung quanh gấp đôi diện tích đáy. Khi đó, thể tích của hình chóp bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A){{{a^3}\sqrt 3 } \over 6}; \cr & (B){{{a^3}\sqrt 3 } \over 3}; \cr & (C){{{a^3}\sqrt 3 } \over 2}; \cr & (D){{{a^3}\sqrt 3 } \over {12}}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Với hình chóp tứ giác đều có cạnh đáy bằng a và mặt bên tạo với mặt đáy một góc \(45^0\). Thể tích của hình chóp đó bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A){{{a^3}} \over 3}; \cr & (B){{{a^3}} \over 6}; \cr & (C){{2{a^3}} \over 3}; \cr & (D){{{a^3}} \over 9}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hình chóp tam giác S.ABC có \(SA \bot SB,SB \bot SC,SC \bot SA\) và AB=13cm, BC=15cm, CA=\(\sqrt {106} \)cm. Thể tích của hình chóp bằng đáp án:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;90c{m^3}; \cr & (B)\;80c{m^3}; \cr & (C)\;92c{m^3}; \cr & (D)\;80\sqrt 2 c{m^3}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho một hình chóp tam giác đều có cạnh bên bằng b và chiều cao h. Khi đó, thể tích của hình chóp bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A){{\sqrt 3 } \over 4}\left( {{b^2} - {h^2}} \right)h; \cr & (B){{\sqrt 3 } \over {12}}\left( {{b^2} - {h^2}} \right)h; \cr & (C){{\sqrt 3 } \over 4}\left( {{b^2} - {h^2}} \right)b; \cr & (D){{\sqrt 3 } \over 8}\left( {{b^2} - {h^2}} \right)h; \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Hình chóp tam giác S.ABC với \(SA \bot SB,SB \bot SC,SC \bot SA,\)\(SA = a,SB = b,SC = c.\) Tính thể tích của hình chóp bằng:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;{1 \over 3}abc; \cr & (B)\;{1 \over 6}abc; \cr & (C)\;{1 \over 9}abc; \cr & (D)\;{2 \over 3}abc. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho một hình chóp tam giác có đường cao bằng 100cm và các cạnh đáy bằng 20cm, 21cm,29cm. Thể tích của hình chóp đó bằng bao nhiêu?
06/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;6000c{m^3}; \cr & (B)\;6213c{m^3}; \cr & (C)\;7000c{m^3}; \cr & (D)\;7000\sqrt 2 c{m^3} \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Biết thể tích của một hình hộp chữ nhật là V, đáy là hình vuông cạnh a. Khi đó diện tích toàn phần của hình hộp bằng:
06/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;2\left( {{V \over a} + {a^2}} \right); \cr & (B)\;4{V \over a} + 2{a^2};\cr & (C)\;2\left( {{V \over {{a^2}}} + a} \right); \cr & (D)\;4\left( {{V \over {{a^2}}} + a} \right). \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hình lập phương ABCD.A’B’C’D’ cạnh a, tâm O. Khi đó thể tích khối tứ diện AA’B’O là đáp án?
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;{{{a^3}} \over 8}; \cr & (B)\;{{{a^3}} \over {12}}; \cr & (C)\;{{{a^3}} \over 9}; \cr & (D)\;{{{a^3}\sqrt 2 } \over 3}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy là một hình thoi với diện tích S1. Hai mặt chéo ACC’A’ và BDD’B’ có diện tích lần lượt bằng S2 và S3. Khi đó thể tích của hình hộp là:
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;\sqrt {{{{S_1}{S_2}{S_3}} \over 2}} ; \cr & (B)\;{{\sqrt 2 } \over 3}\sqrt {{S_1}{S_2}{S_3}} ; \cr & (C)\;{{\sqrt 3 } \over 3}\sqrt {{S_1}{S_2}{S_3}} ; \cr & (D)\;{{{S_1}} \over 2}\sqrt {{S_2}{S_3}} . \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Hình hộp chữ nhật ABCD.A’B’C’D’ có diện tích các mặt ABCD, ABB’A’, ADD’A’ lần lượt bằng 20cm2, 28 cm2 và 35cm2. Tính thể tích của hình hộp là:
06/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;160c{m^3}; \cr & (B)\;120c{m^3}; \cr & (C)\;130c{m^3}; \cr & (D)\;140c{m^3}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hình hộp ABCD.A’B’C’D’ có đáy là một hình thoi và hai mặt chéo ACC’A’, BDD’B đều vuông góc với mặt phẳng đáy. Hai mặt này có diện tích lần lượt là 100cm2, 105cm2 và cắt nhau theo một đường thẳng có độ dài 10cm. Khi đó thể tích của hình hộp đã cho là đáp án?
07/06/2021 | 1 Trả lời
\(\eqalign{ & (A)\;225\sqrt 5 c{m^3}; \cr & (B)\;235\sqrt 5 c{m^3}; \cr & (C)\;425c{m^3}; \cr & (D)\;525c{m^3}. \cr} \)
Theo dõi (0)Gửi câu trả lời Hủy -
(A) Phép vị tự biến mặt phẳng thành mặt phẳng song song với nó.
(B) Phép vị tự biến mặt phẳng qua tâm vị tự thành chính nó ;
(C ) Không có phép vị tự nào biến hai điểm phân biệt A và B lần lượt thành A và B ;
(D) Phép vị tự biến đường thẳng thành đường thẳng song song với nó.
Theo dõi (0)Gửi câu trả lời Hủy -
Thực hiện liên tiếp phép vị tự tâm O tỉ số k và phép đối xứng qua mặt phẳng \(\left( P \right)\),\(\left( {O \notin \left( P \right)} \right)\), ta được phép biến hình f. Giả sử (Q) là mặt phẳng qua O và vuông góc với (P). Khi đó f biến (Q) thành:
07/06/2021 | 1 Trả lời
(A) Mặt phẳng (Q’) song song với (Q);
(B) Mặt phẳng (P) ;
(C) Mặt phẳng (Q) ;
(D) Mặt phẳng (P’) qua O và song song với (P).
Theo dõi (0)Gửi câu trả lời Hủy -
Hình H gồm ba mặt phẳng (P), (Q),và (R),trong đó \(\left( P \right)//\left( Q \right)\) và \(\left( P \right) \bot \left( R \right)\). Các mặt phẳng đối xứng của H là
07/06/2021 | 1 Trả lời
(A) Mặt phẳng cách đều hai mặt phẳng (P) và (Q);
(B) Mặt phẳng (R ) và mặt phẳng cách đều (P) và (Q);
(C ) Mặt phẳng (R );
(D) Cả ba đáp án đều sai.
Theo dõi (0)Gửi câu trả lời Hủy -
(A) 4
(B) 6
(C ) 8
(D) 10
Theo dõi (0)Gửi câu trả lời Hủy -
(A) 3
(B) 6
(C ) 9
(D) 12
Theo dõi (0)Gửi câu trả lời Hủy