Giải bài 11 tr 101 sách GK Toán Hình lớp 12
Trong không gian Oxyz cho các điểm A(-1;2;0), B(-3;0;2), C(1;2;3), D(0;3;-2)
a) Viết phương trình mặt phẳng (ABC) và phương trình tham số của đường thẳng AD.
b) Viết phương trình mặt phẳng \((\alpha )\) chứa AD và song song với BC.
Hướng dẫn giải chi tiết bài 11
Câu a:
- Mặt phẳng (ABC) có \(\overrightarrow{AB}=(-2;-2;2)\) và \(\overrightarrow{AC}=(2;0;3)\)
\(\left [ \overrightarrow{AB},\overrightarrow{AC} \right ]= (-6;10;4)\)
Suy ra mặt phẳng (ABC) có vecto pháp tuyến \(\overrightarrow n = - \frac{1}{2}.\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = (3; - 5;2).\)
Vậy phương trình của (ABC) là:
\(3(x+1)-5(y-2)-2z=0\Leftrightarrow 3x-5y-2z+13=0\)
- Đường thẳng AD đi qua điểm A và có vecto chỉ phương \(\overrightarrow{AD}=(1;1;-2)\)
Vậy phương trình tham số của đường thẳng AD là: \(\left\{\begin{matrix} x=-1+t\\ y=2+t\\ z=-2t \end{matrix}\right.\)
Câu b:
Ta có \(\overrightarrow {AD} = \left( {1;1; - 2} \right);\overrightarrow {BC} = \left( {4;2;1} \right).\)
\(\left [ \overrightarrow{AD},\overrightarrow{BC} \right ]=(5;-9;-2)\)
Mặt phẳng \((\alpha )\) chứa AD và song song với BC.
Suy ra \((\alpha )\) có một VTPT là:\(\vec{n}=\left [ \overrightarrow{AD},\overrightarrow{BC} \right ]=(5;-9;-2)\)
Phương trình mp \((\alpha )\) là:
\(5(x+1)-9(y-2)-2z=0\Leftrightarrow 5x-9y-2z+23=0\).
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 9 trang 100 SGK Hình học 12
Bài tập 10 trang 100 SGK Hình học 12
Bài tập 12 trang 101 SGK Hình học 12
Bài tập 13 trang 101 SGK Hình học 12
Bài tập 14 trang 101 SGK Hình học 12
Bài tập 15 trang 101 SGK Hình học 12
Bài tập 16 trang 102 SGK Hình học 12
Bài tập 1 trang 122 SGK Hình học 12 NC
Bài tập 2 trang 122 SGK Hình học 12 NC
Bài tập 3 trang 122 SGK Hình học 12 NC
Bài tập 4 trang 122 SGK Hình học 12 NC
Bài tập 5 trang 122 SGK Hình học 12 NC
Bài tập 6 trang 123 SGK Hình học 12 NC
Bài tập 7 trang 123 SGK Hình học 12 NC
Bài tập 8 trang 123 SGK Hình học 12 NC
Bài tập 9 trang 123 SGK Hình học 12 NC
Bài tập 10 trang 123 SGK Hình học 12 NC
Bài tập 1 trang 127 SGK Hình học 12 NC
Bài tập 2 trang 127 SGK Hình học 12 NC
Bài tập 3 trang 127 SGK Hình học 12 NC
Bài tập 4 trang 128 SGK Hình học 12 NC
Bài tập 5 trang 128 SGK Hình học 12 NC
Bài tập 6 trang 128 SGK Hình học 12 NC
Bài tập 7 trang 128 SGK Hình học 12 NC
Bài tập 8 trang 129 SGK Hình học 12 NC
Bài tập 9 trang 129 SGK Hình học 12 NC
Bài tập 10 trang 129 SGK Hình học 12 NC
Bài tập 12 trang 129 SGK Hình học 12 NC
Bài tập 11 trang 129 SGK Hình học 12 NC
Bài tập 13 trang 129 SGK Hình học 12 NC
Bài tập 14 trang 130 SGK Hình học 12 NC
Bài tập 15 trang 130 SGK Hình học 12 NC
Bài tập 16 trang 130 SGK Hình học 12 NC
Bài tập 17 trang 130 SGK Hình học 12 NC
Bài tập 18 trang 130 SGK Hình học 12 NC
Bài tập 19 trang 131 SGK Hình học 12 NC
Bài tập 21 trang 131 SGK Hình học 12 NC
Bài tập 22 trang 131 SGK Hình học 12 NC
Bài tập 23 trang 132 SGK Hình học 12 NC
Bài tập 1 trang 168 SBT Hình học Toán 12
Bài tập 2 trang 168 SBT Hình học Toán 12
Bài tập 3 trang 169 SBT Hình học Toán 12
Bài tập 4 trang 169 SBT Hình học Toán 12
Bài tập 5 trang 169 SBT Hình học Toán 12
Bài tập 6 trang 169 SBT Hình học Toán 12
Bài tập 7 trang 169 SBT Hình học Toán 12
Bài tập 8 trang 169 SBT Hình học Toán 12
Bài tập 9 trang 170 SBT Hình học Toán 12
Bài tập 10 trang 170 SBT Hình học Toán 12
Bài tập 1 trang 170 SBT Hình học Toán 12
Bài tập 2 trang 170 SBT Hình học Toán 12
Bài tập 3 trang 170 SBT Hình học Toán 12
Bài tập 4 trang 171 SBT Hình học Toán 12
Bài tập 5 trang 171 SBT Hình học Toán 12
Bài tập 6 trang 171 SBT Hình học Toán 12
Bài tập 7 trang 171 SBT Hình học Toán 12
Bài tập 8 trang 171 SBT Hình học Toán 12
Bài tập 9 trang 171 SBT Hình học Toán 12
Bài tập 10 trang 172 SBT Hình học Toán 12
Bài tập 11 trang 172 SBT Hình học Toán 12
Bài tập 12 trang 172 SBT Hình học Toán 12
Bài tập 13 trang 172 SBT Hình học Toán 12
Bài tập 14 trang 172 SBT Hình học Toán 12
Bài tập 15 trang 172 SBT Hình học Toán 12
Bài tập 16 trang 173 SBT Hình học Toán 12
Bài tập 17 trang 173 SBT Hình học Toán 12
Bài tập 18 trang 173 SBT Hình học Toán 12
Bài tập 19 trang 173 SBT Hình học Toán 12
Bài tập 20 trang 173 SBT Hình học Toán 12
Bài tập 21 trang 173 SBT Hình học Toán 12
Bài tập 22 trang 174 SBT Hình học Toán 12
-
Trong không gian Oxyz, cho \(A\left( {1;3;5} \right),\,\,B\left( { - 5; - 3; - 1} \right)\). Tìm phương trình mặt cầu đường kính AB:
bởi Lê Tấn Thanh 05/05/2022
Theo dõi (0) 1 Trả lời -
Cho mặt cầu \(S\left( {O;R} \right)\) và mặt phẳng \(\left( \alpha \right)\). Biết rằng khoảng cách từ O tới \(\left( \alpha \right)\) bằng d. Nếu \(d < R\) thì giao tuyến của mặt phẳng \(\left( \alpha \right)\) với mặt cầu \(S\left( {O;R} \right)\) là đường tròn có bán kính bằng
bởi Sam sung 05/05/2022
Theo dõi (0) 1 Trả lời -
Tính thể tích khối tròn xoay được tạo thành khi quay quanh trục Ox hình phẳng (H) được giới hạn bởi các đường \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\), trục Ox và hai đường thẳng \(x = a,x = b\)
bởi Nguyễn Quang Thanh Tú 04/05/2022
Theo dõi (0) 1 Trả lời -
Một hình hộp chữ nhật có chiều cao là bằng \(90cm\), đáy hình hộp là hình chữ nhật có chiều rộng là \(50cm\) và chiều dài là \(80cm\). Trong khối hộp có chứa nước, mực nước so với đáy hộp có chiều cao là \(40cm\). Hỏi khi đặt vào khối hộp một khối trụ có chiều cao bằng chiều cao khối hộp và bán kính đáy là \(20cm\) theo phương thẳng đứng thì chiều cao của mực nước so với đáy là bao nhiêu?
bởi Bảo Anh 04/05/2022
Theo dõi (0) 1 Trả lời -
ADMICRO
Trong hệ tọa độ \(Oxyz\), cho điểm sau \(M\left( {1; - 1;2} \right)\) và hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = - 1\end{array} \right.,{d_2}:\dfrac{{x + 1}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{1}\).
bởi Khanh Đơn 04/05/2022
Đường thẳng \(\Delta \) đi qua \(M\) và cắt cả hai đường thẳng \({d_1},{d_2}\) có véc tơ chỉ phương là \(\overrightarrow {{u_\Delta }} \left( {1;a;b} \right)\), tính \(a + b\).
Theo dõi (0) 1 Trả lời -
Cho biết có tất cả bao nhiêu giá trị thực của tham số \(m\) để đường thẳng \(d:y = mx + 1\) cắt đồ thị \(\left( C \right):{x^3} - {x^2} + 1\) tại ba điểm \(A;B\left( {0;1} \right);C\) phân biệt sao cho tam giác \(AOC\) vuông tại \(O\left( {0;0} \right)\)?
bởi minh thuận 05/05/2022
Theo dõi (0) 1 Trả lời -
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Hãy tính khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAD} \right)\).
bởi Minh Thắng 04/05/2022
Theo dõi (0) 1 Trả lời -
Cho hai đường thẳng sau \({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 2 - t\\z = 3 + 2t\end{array} \right.\) và \({d_2}:\dfrac{{x - 1}}{2} = \dfrac{{y - m}}{1} = \dfrac{{z + 2}}{{ - 1}}\) (với \(m\) là tham số). Hãy tìm \(m\) để hai đường thẳng \({d_1};{d_2}\) cắt nhau.
bởi Truc Ly 05/05/2022
Theo dõi (0) 1 Trả lời -
Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có đáy làm tam giác đều cạnh \(a,AA' = 2a\). Gọi \(\alpha \) là góc giữa \(AB'\) và \(BC'\). Thực hiện tính \(\cos \alpha \).
bởi Huy Tâm 04/05/2022
Theo dõi (0) 1 Trả lời -
Cho hàm số sau \(y = {x^3} - 3{x^2} + 4\) có đồ thị \(\left( C \right)\) như hình vẽ bên và đường thẳng \(d:y = {m^3} - 3{m^2} + 4\) (với \(m\) là tham số). Hỏi có bao nhiêu giá trị nguyên của tham số \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( C \right)\) tại ba điểm phân biệt?
bởi thi trang 04/05/2022
Theo dõi (0) 1 Trả lời -
Cho khối nón \(\left( N \right)\) đỉnh \(S\), có chiều cao là bằng \(a\sqrt 3 \) và độ dài đường sinh là \(3a\). Mặt phẳng \(\left( P \right)\) đi qua đỉnh \(S\), cắt và tạo với mặt đáy của khối nón một góc \({60^0}\). Hãy tính diện tích thiết diện tạo bởi mặt phẳng \(\left( P \right)\) và khối nón \(\left( N \right)\).
bởi thu trang 05/05/2022
Theo dõi (0) 1 Trả lời -
Cho hình lập phương sau \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Một hình nón có đỉnh là tâm của hình vuông \(A'B'C'D'\) và có đường tròn đáy ngoại tiếp hình vuông \(ABCD\). Hãy tính diện tích xung quanh của hình nón đó.
bởi Hồng Hạnh 05/05/2022
Theo dõi (0) 1 Trả lời