Bài tập 2 trang 122 SGK Hình học 12 NC
Cho tứ diện ABCD có thể tích V. Hãy tính thể tích hình tứ diện có đỉnh là trọng tâm các mặt của tứ diện đã cho.
Hướng dẫn giải chi tiết
Gọi G là trọng tâm tứ diện ABCD và A’, B’, C’, D’ lần lượt là trọng tâm các tam giác BCD, ACD, ABD, ABC.
Gọi \(V\left( {G; - \frac{1}{3}} \right)\) là phép vị tự tâm G tỉ số \(k = - \frac{1}{3}\)
Ta có: \(\overrightarrow {GA'} = - \frac{1}{3}\overrightarrow {GA} .\)
Suy ra: \(V\left( {G; - \frac{1}{3}} \right):A \to A'.\)
Tương tự:
B → B′
C → C′
D → D′
Do đó: \(V:ABCD \to A'B'C'D'\)
Vậy \({V_{A'B'C'D'}} = {\left| k \right|^3}{V_{ABCD}} = \frac{1}{{27}}V.\)
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 16 trang 102 SGK Hình học 12
Bài tập 1 trang 122 SGK Hình học 12 NC
Bài tập 3 trang 122 SGK Hình học 12 NC
Bài tập 4 trang 122 SGK Hình học 12 NC
Bài tập 5 trang 122 SGK Hình học 12 NC
Bài tập 6 trang 123 SGK Hình học 12 NC
Bài tập 7 trang 123 SGK Hình học 12 NC
Bài tập 8 trang 123 SGK Hình học 12 NC
Bài tập 9 trang 123 SGK Hình học 12 NC
Bài tập 10 trang 123 SGK Hình học 12 NC
Bài tập 1 trang 127 SGK Hình học 12 NC
Bài tập 2 trang 127 SGK Hình học 12 NC
Bài tập 3 trang 127 SGK Hình học 12 NC
Bài tập 4 trang 128 SGK Hình học 12 NC
Bài tập 5 trang 128 SGK Hình học 12 NC
Bài tập 6 trang 128 SGK Hình học 12 NC
Bài tập 7 trang 128 SGK Hình học 12 NC
Bài tập 8 trang 129 SGK Hình học 12 NC
Bài tập 9 trang 129 SGK Hình học 12 NC
Bài tập 10 trang 129 SGK Hình học 12 NC
Bài tập 12 trang 129 SGK Hình học 12 NC
Bài tập 11 trang 129 SGK Hình học 12 NC
Bài tập 13 trang 129 SGK Hình học 12 NC
Bài tập 14 trang 130 SGK Hình học 12 NC
Bài tập 15 trang 130 SGK Hình học 12 NC
Bài tập 16 trang 130 SGK Hình học 12 NC
Bài tập 17 trang 130 SGK Hình học 12 NC
Bài tập 18 trang 130 SGK Hình học 12 NC
Bài tập 19 trang 131 SGK Hình học 12 NC
Bài tập 21 trang 131 SGK Hình học 12 NC
Bài tập 22 trang 131 SGK Hình học 12 NC
Bài tập 23 trang 132 SGK Hình học 12 NC
Bài tập 1 trang 168 SBT Hình học Toán 12
Bài tập 2 trang 168 SBT Hình học Toán 12
Bài tập 3 trang 169 SBT Hình học Toán 12
Bài tập 4 trang 169 SBT Hình học Toán 12
Bài tập 5 trang 169 SBT Hình học Toán 12
Bài tập 6 trang 169 SBT Hình học Toán 12
Bài tập 7 trang 169 SBT Hình học Toán 12
Bài tập 8 trang 169 SBT Hình học Toán 12
Bài tập 9 trang 170 SBT Hình học Toán 12
Bài tập 10 trang 170 SBT Hình học Toán 12
Bài tập 1 trang 170 SBT Hình học Toán 12
Bài tập 2 trang 170 SBT Hình học Toán 12
Bài tập 3 trang 170 SBT Hình học Toán 12
Bài tập 4 trang 171 SBT Hình học Toán 12
Bài tập 5 trang 171 SBT Hình học Toán 12
Bài tập 6 trang 171 SBT Hình học Toán 12
Bài tập 7 trang 171 SBT Hình học Toán 12
Bài tập 8 trang 171 SBT Hình học Toán 12
Bài tập 9 trang 171 SBT Hình học Toán 12
Bài tập 10 trang 172 SBT Hình học Toán 12
Bài tập 11 trang 172 SBT Hình học Toán 12
Bài tập 12 trang 172 SBT Hình học Toán 12
Bài tập 13 trang 172 SBT Hình học Toán 12
Bài tập 14 trang 172 SBT Hình học Toán 12
Bài tập 15 trang 172 SBT Hình học Toán 12
Bài tập 16 trang 173 SBT Hình học Toán 12
Bài tập 17 trang 173 SBT Hình học Toán 12
Bài tập 18 trang 173 SBT Hình học Toán 12
Bài tập 19 trang 173 SBT Hình học Toán 12
Bài tập 20 trang 173 SBT Hình học Toán 12
Bài tập 21 trang 173 SBT Hình học Toán 12
Bài tập 22 trang 174 SBT Hình học Toán 12
-
Hãy tính thể tích V của khối trụ có bán kính đáy bằng 6 và chiều cao bằng 3.
bởi Dang Tung 10/06/2021
A. \(V = 216\pi \) B. \(V = 108\pi \)
C. \(V = 72\pi \) D. \(V = 36\pi \)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho hai điểm \(A\left( {4; - 1;3} \right),B\left( {0;1; - 5} \right)\). Phương trình mặt cầu đường kính AB là đáp án?
bởi bach dang 11/06/2021
A. \({\left( {x - 2} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 21\)
B. \({\left( {x - 2} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 17\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 27\)
D. \({\left( {x + 2} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 21\)
Theo dõi (0) 1 Trả lời -
Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là \(2{\rm{d}}m\) và \(4{\rm{d}}m\). Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số \(y = \sqrt {x + 1} \). Hãy tính thể tích của bình cắm hoa đó.
bởi Anh Trần 11/06/2021
A. \(8\pi \) \(d{m^2}\)
B. \(\frac{{15\pi }}{2}\) \({\rm{d}}{m^2}\)
C. \(\frac{{14\pi }}{3}\) \({\rm{d}}{m^3}\)
D. \(\frac{{15\pi }}{2}\) \({\rm{d}}{m^3}\)
Theo dõi (0) 1 Trả lời -
Cho hình hộp chữ nhật \(ABC{\rm{D}}.A'B'C'D'\) có đáy \(ABC{\rm{D}}\) là hình vuông cạnh a và \({\rm{AA' = 2a}}\). Tính thể tích khối tứ diện \(B{\rm{D}}B'C\).
bởi Hoàng giang 11/06/2021
A. \(\frac{{{a^3}}}{6}\)
B. \(\frac{{{a^3}}}{4}\)
C. \(\frac{{{a^3}}}{2}\)
D. \(\frac{{{a^3}}}{3}\)
Theo dõi (0) 1 Trả lời -
ADMICRO
Trong không gian Oxyz cho 3 điểm \(A\left( {1; - 1;3} \right),B\left( {2;1;0} \right),C\left( { - 3; - 1; - 3} \right)\) và mặt phẳng \(\left( P \right):x + y - z - 4 = 0\). Gọi \(M\left( {a;b;c} \right)\) là điểm thuộc mặt phẳng (P) sao cho biểu thức \(T = \left| {3\overrightarrow {MA} - 2\overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Giá trị của biểu thức \({\rm{S}} = a + b + c\).
bởi hi hi 11/06/2021
A. \({\rm{S}} = 3\) B. \(S = - 1\)
C. \({\rm{S}} = 2\) D. \({\rm{S}} = 1\)
Theo dõi (0) 1 Trả lời -
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và \({\rm{SA}} \bot \left( {ABC{\rm{D}}} \right)\). Biết \({\rm{S}}A = \frac{{a\sqrt 6 }}{3}\). Có góc giữa SC và mặt phẳng \(\left( {ABC{\rm{D}}} \right)\).
bởi Vũ Hải Yến 11/06/2021
A. \(30^\circ \) B. \(60^\circ \) C. \(75^\circ \) D. \(45^\circ \)
Theo dõi (0) 1 Trả lời -
Cho hình hộp \(ABC{\rm{D}}.A'B'C'D'\) có đáy \(ABC{\rm{D}}\) là hình chữ nhật với \(AB = a,A{\rm{D}} = {\rm{a}}\sqrt 3 \). Hình chiếu vuông góc của \(A'\) lên \(\left( {ABC{\rm{D}}} \right)\) trùng với giao điểm của AC và BD. Hãy tính khoảng cách từ B’ đến mặt phẳng \(\left( {A'B{\rm{D}}} \right)\).
bởi Minh Hanh 11/06/2021
A. \(\frac{a}{2}\)
B. \(a\sqrt 3 \)
C. \(\frac{{a\sqrt 3 }}{6}\)
D. \(\frac{{a\sqrt 3 }}{2}\)
Theo dõi (0) 1 Trả lời -
Hình trụ có trục \(OO'\), chiều cao bằng a. Trên hai đường tròn đáy \(\left( O \right)\) và \(\left( {O'} \right)\) lần lượt lấy hai điểm A, B sao cho khoảng cách giữa hai đường thẳng AB và OO’ bằng \(\frac{a}{2}\). Góc giữa hai đường thẳng AB và OO’ bằng \(60^\circ \). Tính thể tích của khối trụ đã cho.
bởi Phạm Hoàng Thị Trà Giang 11/06/2021
A. \(\frac{{2\pi {a^3}}}{3}\)
B. \(\frac{{\pi {a^3}}}{3}\)
C. \(2\pi {a^3}\)
D. \(\pi {a^3}\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2{\rm{x}} - y + 3 = 0\). Một vectơ pháp tuyến của \(\left( P \right)\) có tọa độ là bằng
bởi hà trang 11/06/2021
A. \(\left( {2;1;0} \right)\) B. \(\left( {2; - 1;3} \right)\)
C. \(\left( {2; - 1;0} \right)\) D. \(\left( {2;1;3} \right)\)
Theo dõi (0) 1 Trả lời -
Cho hình nón có độ dài đường sinh \(l = 4{\rm{a}}\), bán kính đáy \({\rm{R}} = a\sqrt 3 \). Diện tích xung quanh hình nón là bằng
bởi can chu 11/06/2021
A. \(8\sqrt 3 \pi {a^2}\) B. \(\frac{{4\sqrt 3 \pi {a^2}}}{3}\)
C. \(4\sqrt 3 \pi {a^2}\) D. \(2\sqrt 3 \pi {a^2}\)
Theo dõi (0) 1 Trả lời -
Cho khối chóp S.ABC, mặt bên SBC là tam giác vuông cân tại S có BC=2a, cạnh \({\rm{S}}A = a\sqrt 2 \) và tạo với mặt phẳng \(\left( {SBC} \right)\) một góc \(30^\circ \). Cho biết thể tích của khối chóp S.ABC.
bởi Hữu Trí 11/06/2021
A. \(\frac{{{a^3}\sqrt 2 }}{3}\) B. \(\frac{{{a^2}\sqrt 3 }}{3}\)
C. \(\frac{{{a^3}\sqrt 3 }}{6}\) D. \(\frac{{{a^3}\sqrt 2 }}{6}\)
Theo dõi (0) 1 Trả lời -
Trong không gian \({\rm{Ox}}yz\), cho hai điểm \(A\left( {1; - 1; - 3} \right)\), \(B\left( { - 2;2;1} \right)\). Vectơ \(\overrightarrow {AB} \) có tọa độ là bằng
bởi Bảo khanh 11/06/2021
A. \(\left( { - 3;3;4} \right)\) B. \(\left( { - 1;1;2} \right)\)
C. \(\left( {3; - 3;4} \right)\) D. \(\left( { - 3;1;4} \right)\)
Theo dõi (0) 1 Trả lời