Bài tập 19 trang 173 SBT Hình học Toán 12
Cho một hình trụ có bán kính đáy R, chiều cao h, thể tích V1 và một hình nón có đáy trùng với đáy của một hình trụ, có đỉnh trùng với tâm đáy còn lại của hình trụ (xem hình) và thể tích V2. Hệ thức giữa V1 và V2 là:
A. V1 = 2V2 B. V1 = 3V2
C. V2 = 3V1 D. V2 = V1
Hướng dẫn giải chi tiết Bài tập 19 trang 173
Hình trụ có bán kính đáy R và chiều cao h nên thể tích V1 = πR2h.
Hình nón có bán kính đáy R và chiều cao h nên thể tích V2 = (πR2h) / 3
Từ đó suy ra: V1 = 3V2
Chọn B.
-- Mod Toán 12 HỌC247
Bài tập SGK khác
-
Gọi M là giao điểm của đường thẳng d với mặt phẳng (P) , điểm A thuộc đường thẳng d có cao độ âm sao cho \(AM=\sqrt{3}\)
bởi thi trang 07/02/2017
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d và mặt phẳng (P) lần lượt có phương trình là \(\frac{x-1}{1}=\frac{y}{1}=\frac{x+1}{1}, x-y+2z-1=0\) . Gọi M là giao điểm của đường thẳng d với mặt phẳng (P) , điểm A thuộc đường thẳng d có cao độ âm sao cho \(AM=\sqrt{3}\) . Viết phương trình mặt cầu (S) có tâm A và tiếp xúc với mặt phẳng (P) .
Theo dõi (0) 1 Trả lời -
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân và nằm trong mặt phẳng vuông góc với đáy (ABCD), biết \(SD=2a\sqrt{5}\), SC tạo với mặt đáy (ABCD) một góc \(60^{\circ}\). Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng DM và SA.
Theo dõi (0) 2 Trả lời -
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Gọi K là điểm thuộc cạnh AB thỏa KB = 3KA. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa SB và KD.
Theo dõi (0) 1 Trả lời -
Viết phương trình mặt phẳng (P) chứa đường thẳng (d) sao cho khoảng cách từ A đến (P) đạt giá trị lớn nhất
bởi Lan Anh 08/02/2017
Cho đường thẳng (d): \(\small \left\{\begin{matrix} x=1+2t\\ y=t\\ z=2+2t \end{matrix}\right.\) và điểm A(2;5;3)
a.Tìm tọa độ hình chiếu vuông góc H của A trên đường thẳng (d )
b.Viết phương trình mặt phẳng (P) chứa đường thẳng (d) sao cho khoảng cách từ A đến (P) đạt giá trị lớn nhất.
Theo dõi (0) 2 Trả lời