Bài tập 7 trang 123 SGK Hình học 12 NC
Cho hình trụ có bán kính R và đường cao \(R\sqrt 2 \). Gọi AB và CD là hai đường kính thay đổi của hai đường tròn đáy mà AB vuông góc với CD.
a) Chứng minh ABCD là tứ diện đều.
b) Chứng minh rằng các đường thẳng AC, AD, BC, BD luôn tiếp xúc với một mặt trụ cố định (tức là khoảng cách giữa mỗi đường thẳng đó và trục của mặt trụ bằng bán kính mặt trụ).
Hướng dẫn giải chi tiết
a) Gọi A’, B’ lần lượt là hình chiếu của A, B trên mặt phẳng chứa đường tròn đáy có đường kính CD, khi đó A’, B’ nằm trên đường tròn đáy.
Ta có: \(A'B' \bot CD\) nên A’CB’D là hình vuông có đường chéo CD = 2R nên \(A'C = R\sqrt 2 \) mà \(AA' = R\sqrt 2 \) nên ta suy ra AC = 2R.
Tương tự AD = BC = BD = 2R. Vậy ABCD là tứ diện đều.
b) Gọi O, O’ lần lượt là tâm của hai đường tròn đáy.
Ta có:
\(d\left( {OO',AC} \right) = d\left( {OO',\left( {AA'C} \right)} \right) = O'H\)
(với H là trung điểm của A’C).
Vậy \(d = O'H = \frac{{R\sqrt 2 }}{2}.\)
Tương tự khoảng cách giữa mỗi đường thẳng BC, BD và OO’ đều bằng \(\frac{{R\sqrt 2 }}{2}\).
Vậy các cạnh AC, AD, BC, BD đều tiếp xúc với mặt trụ có trục OO’ và bán kính \(\frac{{R\sqrt 2 }}{2}\)
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 5 trang 122 SGK Hình học 12 NC
Bài tập 6 trang 123 SGK Hình học 12 NC
Bài tập 8 trang 123 SGK Hình học 12 NC
Bài tập 9 trang 123 SGK Hình học 12 NC
Bài tập 10 trang 123 SGK Hình học 12 NC
Bài tập 1 trang 127 SGK Hình học 12 NC
Bài tập 2 trang 127 SGK Hình học 12 NC
Bài tập 3 trang 127 SGK Hình học 12 NC
Bài tập 4 trang 128 SGK Hình học 12 NC
Bài tập 5 trang 128 SGK Hình học 12 NC
Bài tập 6 trang 128 SGK Hình học 12 NC
Bài tập 7 trang 128 SGK Hình học 12 NC
Bài tập 8 trang 129 SGK Hình học 12 NC
Bài tập 9 trang 129 SGK Hình học 12 NC
Bài tập 10 trang 129 SGK Hình học 12 NC
Bài tập 12 trang 129 SGK Hình học 12 NC
Bài tập 11 trang 129 SGK Hình học 12 NC
Bài tập 13 trang 129 SGK Hình học 12 NC
Bài tập 14 trang 130 SGK Hình học 12 NC
Bài tập 15 trang 130 SGK Hình học 12 NC
Bài tập 16 trang 130 SGK Hình học 12 NC
Bài tập 17 trang 130 SGK Hình học 12 NC
Bài tập 18 trang 130 SGK Hình học 12 NC
Bài tập 19 trang 131 SGK Hình học 12 NC
Bài tập 21 trang 131 SGK Hình học 12 NC
Bài tập 22 trang 131 SGK Hình học 12 NC
Bài tập 23 trang 132 SGK Hình học 12 NC
Bài tập 1 trang 168 SBT Hình học Toán 12
Bài tập 2 trang 168 SBT Hình học Toán 12
Bài tập 3 trang 169 SBT Hình học Toán 12
Bài tập 4 trang 169 SBT Hình học Toán 12
Bài tập 5 trang 169 SBT Hình học Toán 12
Bài tập 6 trang 169 SBT Hình học Toán 12
Bài tập 7 trang 169 SBT Hình học Toán 12
Bài tập 8 trang 169 SBT Hình học Toán 12
Bài tập 9 trang 170 SBT Hình học Toán 12
Bài tập 10 trang 170 SBT Hình học Toán 12
Bài tập 1 trang 170 SBT Hình học Toán 12
Bài tập 2 trang 170 SBT Hình học Toán 12
Bài tập 3 trang 170 SBT Hình học Toán 12
Bài tập 4 trang 171 SBT Hình học Toán 12
Bài tập 5 trang 171 SBT Hình học Toán 12
Bài tập 6 trang 171 SBT Hình học Toán 12
Bài tập 7 trang 171 SBT Hình học Toán 12
Bài tập 8 trang 171 SBT Hình học Toán 12
Bài tập 9 trang 171 SBT Hình học Toán 12
Bài tập 10 trang 172 SBT Hình học Toán 12
Bài tập 11 trang 172 SBT Hình học Toán 12
Bài tập 12 trang 172 SBT Hình học Toán 12
Bài tập 13 trang 172 SBT Hình học Toán 12
Bài tập 14 trang 172 SBT Hình học Toán 12
Bài tập 15 trang 172 SBT Hình học Toán 12
Bài tập 16 trang 173 SBT Hình học Toán 12
Bài tập 17 trang 173 SBT Hình học Toán 12
Bài tập 18 trang 173 SBT Hình học Toán 12
Bài tập 19 trang 173 SBT Hình học Toán 12
Bài tập 20 trang 173 SBT Hình học Toán 12
Bài tập 21 trang 173 SBT Hình học Toán 12
Bài tập 22 trang 174 SBT Hình học Toán 12
-
Cho hình trụ có diện tích xung quanh bằng \(8\pi {a^2}\) và độ dài đường sinh bằng \(a\). Tính thể tích hình trụ đã cho ta được
bởi Phí Phương 11/06/2021
A. \(16\pi {a^3}\) B. \(32\pi {a^3}\)
C. \(8\pi {a^3}\) D. \(24\pi {a^3}\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz . Biết mặt cầu (S) nhận hai điểm A(4;2;0), B(-2;-4;3) làm hai đầu đường kính. Tính tâm I bán kính R của (S).
bởi Mai Rừng 11/06/2021
A. I (2;-2;3),\(R\)= 9
B. \(I(1; - 1;\dfrac{3}{2})\),\(R = \dfrac{9}{2}\)
C. \(I(1; - 1;\dfrac{3}{2})\),\(R = 9\)
D. \(I(2; - 2;3)\),\(R = \dfrac{9}{2}\)
Theo dõi (0) 1 Trả lời -
A. 4 B. 2 C. 8 D. 16
Theo dõi (0) 1 Trả lời -
A. 12 B. 6 C. 4 D. 8
Theo dõi (0) 1 Trả lời -
ADMICRO
Ta có hình chóp tứ giác có mấy mặt?
bởi Bảo khanh 10/06/2021
A. 4 B. 8 C. 5 D. 6
Theo dõi (0) 1 Trả lời -
Cho hình chóp tứ giác \(S.ABCD\;\) có \(SA \bot \left( {ABCD} \right)\). \(ABCD\)là hình thang vuông tại A và B biết \(AB = 2a,\) \(AD = 3BC = 3a\). Hãy tính thể tích khối chóp \(S.ABCD\;\) theo \(a\) biết góc giữa \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) bằng \({60^0}.\)
bởi Dang Tung 11/06/2021
A. \(6\sqrt 6 {a^3}.\)
B. \(2\sqrt 6 {a^3}.\)
C. \(6\sqrt 3 {a^3}.\)
D. \(2\sqrt 3 {a^3}.\)
Theo dõi (0) 1 Trả lời -
Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(2a\). Có tam giác \(SAB\) nằm trên mặt phẳng vuông góc với đáy và có \(SA = a,{\mkern 1mu} {\mkern 1mu} \,\,SB = a\sqrt 3 .\) Tính thể tích khối chóp \(SACD\).
bởi Tieu Giao 11/06/2021
A. \(\dfrac{{{a^3}\sqrt 3 }}{3}.\)
B. \(\dfrac{{2{a^3}\sqrt 3 }}{3}.\)
C. \(\dfrac{{{a^3}\sqrt 2 }}{3}.\)
D. \(\dfrac{{{a^3}\sqrt 2 }}{6}.\)
Theo dõi (0) 1 Trả lời -
Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), \(AA' = a\sqrt 2 .\) Khoảng cách giữa A'B và CC' bằng câu?
bởi Ngọc Trinh 11/06/2021
A. \(\dfrac{{a\sqrt 3 }}{2}.\) B. \(a\sqrt 3 .\) C. \(a\) D. \(\dfrac{{a\sqrt 6 }}{3}.\)
Theo dõi (0) 1 Trả lời -
Với các loại khối đa diện đều sau, tìm khối đa diện có số cạnh gấp đôi số đỉnh.
bởi Mai Đào 11/06/2021
A. Khối hai mươi mặt đều. B. Khối lập phương.
C. Khối mười hai mặt đều. D. Khối bát diện đều.
Theo dõi (0) 1 Trả lời -
Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, góc giữa mặt bên và mặt đáy bằng \({45^0}\). Thể tích khối chóp đã cho bằng câu?
bởi Ngoc Son 11/06/2021
A. \(\dfrac{{{a^3}}}{3}\)
B. \(\dfrac{{4{a^3}}}{3}\)
C. \(4{a^3}\)
D. \(2{a^3}\)
Theo dõi (0) 1 Trả lời -
Cho khối lăng trụ tam giác đều ABC.A'B'C' có \(AB = a\)và \(AA' = 2a\). Thể tích của khối lăng trụ ABC.A'B'C' bằng bao nhiêu?
bởi Anh Tuyet 10/06/2021
A. \(\dfrac{{{a^3}\sqrt 3 }}{2}.\)
B. \({a^3}\sqrt 3 .\)
C. \(\dfrac{{{a^3}\sqrt 3 }}{{12}}.\)
D. \(\dfrac{{{a^3}\sqrt 3 }}{6}.\)
Theo dõi (0) 1 Trả lời -
Cho khối chóp S.ABC có đáy tam giác vuông cân tại \(B\) và \(AB = a.\)\(SA \bot \left( {ABC} \right)\). Góc giữa cạnh bên SB và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Khi đó khoảng cách từ \(A\)đến \(\left( {SBC} \right)\) là câu
bởi Meo Thi 11/06/2021
A. \(\sqrt 3 a\)
B. \(\dfrac{{a\sqrt 3 }}{3}\)
C. \(\dfrac{{a\sqrt 3 }}{2}\)
D. \(\dfrac{{a\sqrt 2 }}{2}\)
Theo dõi (0) 1 Trả lời