OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho khối nón \(\left( N \right)\) đỉnh \(S\), có chiều cao là bằng \(a\sqrt 3 \) và độ dài đường sinh là \(3a\). Mặt phẳng \(\left( P \right)\) đi qua đỉnh \(S\), cắt và tạo với mặt đáy của khối nón một góc \({60^0}\). Hãy tính diện tích thiết diện tạo bởi mặt phẳng \(\left( P \right)\) và khối nón \(\left( N \right)\).

  bởi thu trang 05/05/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(M\) là trung điểm của \(AB\) thì \(SM \bot AB,OM \bot AB\) \( \Rightarrow \) góc giữa \(\left( {SAB} \right)\) với mặt đáy bằng góc giữa \(SM\) và \(OM\) hay \(\widehat {SMO} = {60^0}\).

    Tam giác \(SOM\) vuông tại \(O\) có \(SO = a\sqrt 3 ,\,\,\widehat {SMO} = {60^0} \Rightarrow SM = \dfrac{{SO}}{{\sin {{60}^0}}} = a\sqrt 3 :\dfrac{{\sqrt 3 }}{2} = 2a\).

    Lại có, tam giác \(SMA\) vuông tại \(M\) có \(MA = \sqrt {S{A^2} - S{M^2}}  = \sqrt {9{a^2} - 4{a^2}}  = a\sqrt 5  \Rightarrow AB = 2MA = 2a\sqrt 5 \).

    Vậy diện tích \({S_{SAB}} = \dfrac{1}{2}SM.AB = \dfrac{1}{2}.2a.2a\sqrt 5  = 2{a^2}\sqrt 5 \).

      bởi Nguyen Dat 05/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF