OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong hệ tọa độ \(Oxyz\), cho điểm sau \(M\left( {1; - 1;2} \right)\) và hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = - 1\end{array} \right.,{d_2}:\dfrac{{x + 1}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{1}\).

Đường thẳng \(\Delta \) đi qua \(M\) và cắt cả hai đường thẳng \({d_1},{d_2}\) có véc tơ chỉ phương là \(\overrightarrow {{u_\Delta }} \left( {1;a;b} \right)\), tính \(a + b\). 

  bởi Khanh Đơn 04/05/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(A\left( {t;1 - t; - 1} \right),B\left( { - 1 + 2t';1 + t'; - 2 + t'} \right)\) là giao điểm của \(\Delta \) với \({d_1},{d_2}\).

    Khi đó \(\overrightarrow {MA}  = \left( {t - 1;2 - t; - 3} \right),\overrightarrow {MB}  = \left( { - 2 + 2t';2 + t'; - 4 + t'} \right)\).

    Ba điểm \(M,A,B\) cùng thuộc \(\Delta \) nên \(\overrightarrow {MA}  = k\overrightarrow {MB}  \Leftrightarrow \left\{ \begin{array}{l}t - 1 = k\left( { - 2 + 2t'} \right)\\2 - t = k\left( {2 + t'} \right)\\ - 3 = k\left( { - 4 + t'} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 0\\kt' = \dfrac{1}{3}\\k = \dfrac{5}{6}\end{array} \right.\)

    Do đó \(A\left( {0;1; - 1} \right) \Rightarrow \overrightarrow {MA}  = \left( { - 1;2; - 3} \right) \Rightarrow \overrightarrow {{u_\Delta }}  = \left( {1; - 2;3} \right)\) là một VTCP của \(\Delta \) hay \(a =  - 2,b = 3 \Rightarrow a + b = 1\).

      bởi hi hi 05/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF