Giải bài 7 tr 100 sách GK Toán Hình lớp 12
Trong không gian cho hai đường thẳng d1 và d2 có phương trình
\(d_1:\left\{\begin{matrix} x=1-t\\ y=t\\ z=-t \end{matrix}\right.d_2:\left\{\begin{matrix} x=2t'\\ y=-1+t'\\ z=t' \end{matrix}\right.\)
a) Chứng minh rằng hai đường thẳng d1 và d2 chéo nhau.
b) Viết phương trình của mặt phẳng \((\alpha )\) chứa d1 và song song với d2.
Hướng dẫn giải chi tiết bài 7
Phương pháp:
Câu a: Trong không gian cho hai đường thẳng: d1 đi qua M1 và có một VTCP \(\overrightarrow{u_1}\), d2 đi qua M2 và có một VTCP \(\overrightarrow{u_2}\).
d1 và d2 chéo nhau \(\Leftrightarrow \left [ \overrightarrow{u_1};\overrightarrow{u_2} \right ]. \overrightarrow{M_1.M_2}\neq 0\).
Câu b: \((\alpha )\) chứa d1 và song song với d2 nên sẽ nhận \(\overrightarrow{u_1}\) và \(\overrightarrow{u_2}\) là cặp VTCP, từ đó ta sẽ suy ra được VTPT của \((\alpha )\).
Lời giải:
Lời giải chi tiết câu a, b bài 7 như sau:
Câu a:
Đường thẳng d1 đi qua M1(1; 0; 0) vecto chỉ phương là \(\vec{u}_1=(-1;1;-1)\)
Đường thẳng d2 đi qua M2(0; -1; 0) vecto chỉ phương là \(\vec{u}_2=(2;1;1)\)
Ta có
\(\vec{n}=\left [ \vec{u}_1.\vec{u}_2 \right ]=(2;-1;-3)\)
\(\overrightarrow {{M_1}{M_2}} = ( - 1; - 1;0)\)
Suy ra \(\vec n. \overrightarrow {{M_1}{M_2}} = - 2 + 1 = - 1 \ne 0\)
Vậy d1 và d2 chéo nhau.
Câu b:
Vecto pháp tuyến mp\((\alpha )\) là: \(\vec{n}=\left [ \vec{u}_1.\vec{u}_2 \right ]=(2;-1;-3)\)
Phương trình mp\((\alpha )\) là: \(2(x-1) -y-3z=0\) hay \(2x-y-3z-2=0\)
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 5 trang 99 SGK Hình học 12
Bài tập 6 trang 100 SGK Hình học 12
Bài tập 8 trang 100 SGK Hình học 12
Bài tập 9 trang 100 SGK Hình học 12
Bài tập 10 trang 100 SGK Hình học 12
Bài tập 11 trang 101 SGK Hình học 12
Bài tập 12 trang 101 SGK Hình học 12
Bài tập 13 trang 101 SGK Hình học 12
Bài tập 14 trang 101 SGK Hình học 12
Bài tập 15 trang 101 SGK Hình học 12
Bài tập 16 trang 102 SGK Hình học 12
Bài tập 1 trang 122 SGK Hình học 12 NC
Bài tập 2 trang 122 SGK Hình học 12 NC
Bài tập 3 trang 122 SGK Hình học 12 NC
Bài tập 4 trang 122 SGK Hình học 12 NC
Bài tập 5 trang 122 SGK Hình học 12 NC
Bài tập 6 trang 123 SGK Hình học 12 NC
Bài tập 7 trang 123 SGK Hình học 12 NC
Bài tập 8 trang 123 SGK Hình học 12 NC
Bài tập 9 trang 123 SGK Hình học 12 NC
Bài tập 10 trang 123 SGK Hình học 12 NC
Bài tập 1 trang 127 SGK Hình học 12 NC
Bài tập 2 trang 127 SGK Hình học 12 NC
Bài tập 3 trang 127 SGK Hình học 12 NC
Bài tập 4 trang 128 SGK Hình học 12 NC
Bài tập 5 trang 128 SGK Hình học 12 NC
Bài tập 6 trang 128 SGK Hình học 12 NC
Bài tập 7 trang 128 SGK Hình học 12 NC
Bài tập 8 trang 129 SGK Hình học 12 NC
Bài tập 9 trang 129 SGK Hình học 12 NC
Bài tập 10 trang 129 SGK Hình học 12 NC
Bài tập 12 trang 129 SGK Hình học 12 NC
Bài tập 11 trang 129 SGK Hình học 12 NC
Bài tập 13 trang 129 SGK Hình học 12 NC
Bài tập 14 trang 130 SGK Hình học 12 NC
Bài tập 15 trang 130 SGK Hình học 12 NC
Bài tập 16 trang 130 SGK Hình học 12 NC
Bài tập 17 trang 130 SGK Hình học 12 NC
Bài tập 18 trang 130 SGK Hình học 12 NC
Bài tập 19 trang 131 SGK Hình học 12 NC
Bài tập 21 trang 131 SGK Hình học 12 NC
Bài tập 22 trang 131 SGK Hình học 12 NC
Bài tập 23 trang 132 SGK Hình học 12 NC
Bài tập 1 trang 168 SBT Hình học Toán 12
Bài tập 2 trang 168 SBT Hình học Toán 12
Bài tập 3 trang 169 SBT Hình học Toán 12
Bài tập 4 trang 169 SBT Hình học Toán 12
Bài tập 5 trang 169 SBT Hình học Toán 12
Bài tập 6 trang 169 SBT Hình học Toán 12
Bài tập 7 trang 169 SBT Hình học Toán 12
Bài tập 8 trang 169 SBT Hình học Toán 12
Bài tập 9 trang 170 SBT Hình học Toán 12
Bài tập 10 trang 170 SBT Hình học Toán 12
Bài tập 1 trang 170 SBT Hình học Toán 12
Bài tập 2 trang 170 SBT Hình học Toán 12
Bài tập 3 trang 170 SBT Hình học Toán 12
Bài tập 4 trang 171 SBT Hình học Toán 12
Bài tập 5 trang 171 SBT Hình học Toán 12
Bài tập 6 trang 171 SBT Hình học Toán 12
Bài tập 7 trang 171 SBT Hình học Toán 12
Bài tập 8 trang 171 SBT Hình học Toán 12
Bài tập 9 trang 171 SBT Hình học Toán 12
Bài tập 10 trang 172 SBT Hình học Toán 12
Bài tập 11 trang 172 SBT Hình học Toán 12
Bài tập 12 trang 172 SBT Hình học Toán 12
Bài tập 13 trang 172 SBT Hình học Toán 12
Bài tập 14 trang 172 SBT Hình học Toán 12
Bài tập 15 trang 172 SBT Hình học Toán 12
Bài tập 16 trang 173 SBT Hình học Toán 12
Bài tập 17 trang 173 SBT Hình học Toán 12
Bài tập 18 trang 173 SBT Hình học Toán 12
Bài tập 19 trang 173 SBT Hình học Toán 12
Bài tập 20 trang 173 SBT Hình học Toán 12
Bài tập 21 trang 173 SBT Hình học Toán 12
Bài tập 22 trang 174 SBT Hình học Toán 12
-
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\,\,AD = AA' = 2a\). Tính khoảng cách giữa hai đường thẳng \(AC\) và \(DC'\)
bởi thanh hằng 07/05/2022
Theo dõi (0) 1 Trả lời -
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2\)và cạnh bên bằng \(2\sqrt 2 \). Gọi \(\alpha \)là góc của mặt phẳng \(\left( {SAC} \right)\) và mặt phẳng \(\left( {SAB} \right)\). Tính \(\cos \alpha \)
bởi My Van 07/05/2022
Theo dõi (0) 1 Trả lời -
Lăng trụ có chiều cao bằng \(a\), đáy là tam giác vuông cân và có thể tích bằng \(2{a^3}\). Tính cạnh góc vuông của đáy lăng trụ
bởi Ngoc Tiên 06/05/2022
Theo dõi (0) 1 Trả lời -
Cho lăng trụ đều \(ABC.A'B'C'\) có \(AB = 2\sqrt 3 ,\,\,BB' = 2\).Gọi \(M,\,\,N,\,\,P\) tương ứng là trung điểm của \(A'B',\,\,A'C',\,\,BC\). Nếu gọi \(\alpha \) là độ lớn của góc của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ACC'} \right)\) thì \(\cos \alpha \) bằng bao nhiêu?
bởi Bao Chau 07/05/2022
Theo dõi (0) 1 Trả lời -
ADMICRO
Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {3;0;0} \right),\,\,B\left( {0;0;4} \right)\) và song song trục \(Oy\) có phương trình là:
bởi Thúy Vân 07/05/2022
Theo dõi (0) 1 Trả lời -
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(\sqrt 2 a\). Tính độ lớn của góc giữa đường thẳng \(SA\) và mặt phẳng đáy.
bởi thu hảo 07/05/2022
Theo dõi (0) 1 Trả lời -
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\), \(SA \bot \left( {ABC} \right)\), góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(60^\circ \). Hãy tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB\).
bởi bala bala 06/05/2022
Theo dõi (0) 1 Trả lời -
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại\(A\),\(AB = 1{\rm{cm}}\),\(AC = \sqrt 3 {\rm{cm}}\). Tam giác \(SAB\), \(SAC\) lần lượt vuông tại \(B\) và \(C\). Khối cầu ngoại tiếp hình chóp \(S.ABC\) có thể tích bằng\(\frac{{5\sqrt 5 \pi }}{6}{\rm{c}}{{\rm{m}}^{\rm{3}}}\). Hãy tính khoảng cách từ \(C\) tới \(\left( {SAB} \right)\)
bởi Nguyễn Thanh Trà 07/05/2022
Theo dõi (0) 1 Trả lời -
Trong không gian \(Oxyz\), lấy điểm \(C\)trên tia \(Oz\) sao cho \(OC = 1\). Trên hai tia \(Ox,Oy\) lần lượt lấy hai điểm \(A,B\) thay đổi sao cho \(OA + OB = OC\). Hãy tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện \(O.ABC\)?
bởi Phan Thiện Hải 06/05/2022
Theo dõi (0) 1 Trả lời -
Cho hình chóp \(S.ABC\) có các cạnh \(SA = BC = 3\); \(SB = AC = 4\); \(SC = AB = 2\sqrt 5 \). Hãy tính thể tích khối chóp \(S.ABC\).
bởi Nguyễn Hoài Thương 07/05/2022
Theo dõi (0) 1 Trả lời -
Cho hình chóp \(S.ABC\)có đáy là \(\Delta ABC\) vuông cân ở \(B,\,\)\(AC = a\sqrt 2 ,\,\)\(SA \bot \left( {ABC} \right),\) \(SA = a.\) Gọi \(G\) là trọng tâm của \(\Delta SBC\), \(mp\left( \alpha \right)\) đi qua \(AG\) và song song với \(BC\) chia khối chóp thành hai phần. Gọi \(V\)là thể tích của khối đa diện không chứa đỉnh \(S\). Hãy tính \(V.\)
bởi Nguyen Dat 06/05/2022
Theo dõi (0) 1 Trả lời -
Cho hình trụ có đáy là hai đường tròn tâm \(O\) và \(O'\), bán kính đáy bằng chiều cao và bằng \(2a\). Trên đường tròn đáy có tâm \(O\) lấy điểm \(A\), trên đường tròn tâm \(O'\) lấy điểm \(B\). Đặt \(\alpha \) là góc giữa \(AB\) và đáy. Hãy tính \(\tan \alpha \) khi thể tích khối tứ diện \(OO'AB\) đạt giá trị lớn nhất.
bởi Bin Nguyễn 07/05/2022
Theo dõi (0) 1 Trả lời