OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2\)và cạnh bên bằng \(2\sqrt 2 \). Gọi \(\alpha \)là góc của mặt phẳng \(\left( {SAC} \right)\) và mặt phẳng \(\left( {SAB} \right)\). Tính \(\cos \alpha \)

  bởi My Van 07/05/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi O là tâm của hình vuông ABCD.

    Do \(\left\{ \begin{array}{l}OB \bot AC\\OB \bot SO\end{array} \right. \Rightarrow OB \bot \left( {SAC} \right) \Rightarrow \) Hình chiếu vuông góc của tam giác SAB lên (SAC) là tam giác SAO

    Khi đó, \(\cos \alpha  = \cos \left( {\widehat {\left( {SAB} \right);\left( {SAC} \right)}} \right) = \dfrac{{{S_{SAO}}}}{{{S_{SAB}}}}\)

    Ta có:

    \(\Delta SOA\) vuông tại O :

    \({S_{SAB}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)

    \( = \sqrt {\dfrac{{2 + 2\sqrt 2  + 2\sqrt 2 }}{2}.\left( {\dfrac{{2 + 2\sqrt 2  + 2\sqrt 2 }}{2} - 2} \right)\left( {\dfrac{{2 + 2\sqrt 2  + 2\sqrt 2 }}{2} - 2\sqrt 2 } \right)\left( {\dfrac{{2 + 2\sqrt 2  + 2\sqrt 2 }}{2} - 2\sqrt 2 } \right)} \)

    \( = \sqrt {\left( {1 + 2\sqrt 2 } \right).\left( {2\sqrt 2  - 1} \right).1.1}  = \sqrt 7 \)

    \( \Rightarrow \cos \alpha  = \dfrac{{{S_{SAO}}}}{{{S_{SAB}}}} = \dfrac{{\sqrt 3 }}{{\sqrt 7 }} = \dfrac{{\sqrt {21} }}{7}\).

      bởi Nguyễn Thủy Tiên 07/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF