OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 5 trang 92 SGK Hình học 12

Giải bài 5 tr 92 sách GK Toán Hình lớp 12

Cho mặt cầu (S) có phương trình (x – 3)2 + (y + 2)2 + (z – 1)2 = 100 và mặt phẳng \((\alpha )\) có phương trình 2x – 2y – z + 9 = 0. Mp \((\alpha )\) cắt mặt cầu (S) theo một đường tròn (C). Hãy xác định tọa độ tâm và tính bán kính của đường tròn (C).

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 5

Phương pháp:

Trước khi giải bài 5, ta ôn lại vị trí tương đối giữa mặt phẳng và mặt cầu đã học ở chương 2 Hình học 12:

Cho mặt cầu S(O;r) tâm O bán kính r và mặt phẳng (P); H là hình chiếu vuông góc của O lên mặt phẳng (P).

Khi đó h=OH là khoảng cách từ O đến mặt phẳng (P). 

  • Nếu h=r thì (P) tiếp xúc mặt cầu.

Ghi nhớ: Điều kiện cần và đủ để mặt phẳng (P) tiếp xúc với mặt cầu S(O;r) tại điểm H là (P) vuông góc với bán kính OH tại điểm H đó.

  • Nếu h>r thì (P) không có điểm chung với mặt cầu.

  • Nếu h < r thì (P) cắt mặt cầu S(O;r) theo giao tuyến là một đường tròn tâm H bán kính \(r' = \sqrt {{r^2} - {h^2}} .\)

Lời giải:

Lời giải chi tiết bài 5 như sau:

Mặt cầu (S) có tâm là I(3;-2;1) và có bán kính R = 10.

\(d(I,(\alpha ))=\frac{\left | 2.3+2.2-1+9 \right |}{\sqrt{2^2+2^2+1^2}}=6\)

Ta có: \(d(I,(\alpha ))=6< 10\), suy ra mặt phẳng \((\alpha )\) cắt (S) theo một đường tròn (C) chính là hình chiếu vuông góc của I trên mặt phẳng \((\alpha )\).

Mặt phẳng \((\alpha )\) có VTPT \(\overrightarrow n = \left( {2; - 2; - 1} \right)\).

Gọi \(\Delta\) là đường thẳng đi qua I(3;-2;1) và vuông góc với \((\alpha )\) suy ra \(\Delta\) nhận \(\overrightarrow n = \left( {2; - 2; - 1} \right)\) làm VTCP:

Vậy phương trình tham số của \(\Delta\) là: \(\left\{\begin{matrix} x=3+2t\\ y=-2-2t\\ z=1-t \end{matrix}\right.\)

\(\Delta\) cắt \((\alpha )\) tại J(3+2t; -2-2t; 1-t). Vì \(J\in (\alpha )\) nên ta có:

\(2(3+2t) -2(-2-2t) - (1-t)+9=0\Leftrightarrow 9t+18=0\Leftrightarrow t=-2\)

Vậy ta được J(-1; 2; 3)

Bán kính r của (C) được tính theo công thức:

\(r=\sqrt{R^2-d^2(I,(\alpha ))}=\sqrt{100-36}=8\)

Vậy đường tròn (C) có tâm J(-1; 2; 3) và bán kính r = 8.

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 5 trang 92 SGK Hình học 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Bài tập 3 trang 92 SGK Hình học 12

Bài tập 4 trang 92 SGK Hình học 12

Bài tập 6 trang 92 SGK Hình học 12

Bài tập 7 trang 92 SGK Hình học 12

Bài tập 8 trang 93 SGK Hình học 12

Bài tập 9 trang 93 SGK Hình học 12

Bài tập 10 trang 93 SGK Hình học 12

Bài tập 11 trang 93 SGK Hình học 12

Bài tập 12 trang 93 SGK Hình học 12

Bài tập 1 trang 94 SGK Hình học 12

Bài tập 2 trang 94 SGK Hình học 12

Bài tập 3 trang 94 SGK Hình học 12

Bài tập 4 trang 94 SGK Hình học 12

Bài tập 5 trang 95 SGK Hình học 12

Bài tập 6 trang 95 SGK Hình học 12

Bài tập 7 trang 95 SGK Hình học 12

Bài tập 8 trang 95 SGK Hình học 12

Bài tập 9 trang 95 SGK Hình học 12

Bài tập 10 trang 95 SGK Hình học 12

Bài tập 11 trang 96 SGK Hình học 12

Bài tập 12 trang 96 SGK Hình học 12

Bài tập 13 trang 96 SGK Hình học 12

Bài tập 14 trang 97 SGK Hình học 12

Bài tập 15 trang 97 SGK Hình học 12

Bài tập 3.46 trang 131 SBT Hình học 12

Bài tập 3.47 trang 131 SBT Hình học 12

Bài tập 3.48 trang 131 SBT Hình học 12

Bài tập 3.49 trang 132 SBT Hình học 12

Bài tập 3.50 trang 132 SBT Hình học 12

Bài tập 3.51 trang 132 SBT Hình học 12

Bài tập 3.52 trang 132 SBT Hình học 12

Bài tập 3.53 trang 132 SBT Hình học 12

Bài tập 3.54 trang 132 SBT Hình học 12

Bài tập 3.56 trang 132 SBT Hình học 12

Bài tập 3.57 trang 132 SBT Hình học 12

Bài tập 3.58 trang 132 SBT Hình học 12

Bài tập 3.59 trang 133 SBT Toán 12

Bài tập 3.60 trang 133 SBT Toán 12

Bài tập 3.61 trang 133 SBT Toán 12

Bài tập 3.62 trang 133 SBT Toán 12

Bài tập 3.63 trang 133 SBT Toán 12

Bài tập 3.64 trang 133 SBT Toán 12

Bài tập 3.65 trang 133 SBT Toán 12

Bài tập 3.66 trang 134 SBT Toán 12

Bài tập 3.67 trang 134 SBT Toán 12

Bài tập 3.68 trang 134 SBT Toán 12

Bài tập 3.69 trang 134 SBT Toán 12

Bài tập 3.70 trang 134 SBT Toán 12

Bài tập 3.71 trang 134 SBT Toán 12

Bài tập 1 trang 114 SGK Hình học 12 NC

Bài tập 2 trang 114 SGK Hình học 12 NC

Bài tập 3 trang 114 SGK Hình học 12 NC

Bài tập 4 trang 114 SGK Hình học 12 NC

Bài tập 5 trang 114 SGK Hình học 12 NC

Bài tập 6 trang 114 SGK Hình học 12 NC

Bài tập 7 trang 114 SGK Hình học 12 NC

Bài tập 8 trang 115 SGK Hình học 12 NC

Bài tập 9 trang 115 SGK Hình học 12 NC

Bài tập 10 trang 115 SGK Hình học 12 NC

Bài tập 11 trang 115 SGK Hình học 12 NC

Bài tập 12 trang 116 SGK Hình học 12 NC

Bài tập 13 trang 116 SGK Hình học 12 NC

Bài tập 14 trang 116 SGK Hình học 12 NC

Bài tập 15 trang 116 SGK Hình học 12 NC

Bài tập 16 trang 116 SGK Hình học 12 NC

Bài tập 17 trang 117 SGK Hình học 12 NC

Bài tập 18 trang 117 SGK Hình học 12 NC

Bài tập 19 trang 117 SGK Hình học 12 NC

Bài tập 20 trang 118 SGK Hình học 12 NC

Bài tập 21 trang 118 SGK Hình học 12 NC

Bài tập 22 trang 118 SGK Hình học 12 NC

Bài tập 23 trang 118 SGK Hình học 12 NC

Bài tập 24 trang 118 SGK Hình học 12 NC

Bài tập 25 trang 119 SGK Hình học 12 NC

Bài tập 26 trang 119 SGK Hình học 12 NC

Bài tập 27 trang 119 SGK Hình học 12 NC

Bài tập 28 trang 120 SGK Hình học 12 NC

Bài tập 29 trang 120 SGK Hình học 12 NC

Bài tập 30 trang 121 SGK Hình học 12 NC

Bài tập 31 trang 121 SGK Hình học 12 NC

Bài tập 32 trang 121 SGK Hình học 12 NC

Bài tập 33 trang 121 SGK Hình học 12 NC

Bài tập 34 trang 122 SGK Hình học 12 NC

Bài tập 35 trang 122 SGK Hình học 12 NC

Bài tập 36 trang 122 SGK Hình học 12 NC

Bài tập 37 trang 123 SGK Hình học 12 NC

Bài tập 38 trang 123 SGK Hình học 12 NC

Bài tập 39 trang 123 SGK Hình học 12 NC

Bài tập 40 trang 124 SGK Hình học 12 NC

Bài tập 41 trang 124 SGK Hình học 12 NC

Bài tập 42 trang 124 SGK Hình học 12 NC

NONE
OFF