OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tìm giá trị nhỏ nhất của biểu thức \(A = \sqrt {{{(x + 1)}^2} + {y^2} + 4} + \sqrt {{x^2} + {{(y + 1)}^2} + 1} ,\) \(\forall x,y.\)

Tìm giá trị nhỏ nhất của biểu thức  \(A = \sqrt {{{(x + 1)}^2} + {y^2} + 4}  + \sqrt {{x^2} + {{(y + 1)}^2} + 1} ,\)  \(\forall x,y.\)

  bởi Ngoc Tiên 25/05/2021
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đặt \(\overrightarrow u  = \left( {x + 1;y;2} \right),\) \(\overrightarrow v  = \left( { - x; - y - 1;1} \right),\) ta có \(\overrightarrow u  + \overrightarrow v  = {\rm{ }}\left( {1; - 1{\rm{ }};3} \right).\)

    Áp dụng bất đẳng thức \(\left| {\overrightarrow u  + \overrightarrow v } \right| \le \left| {\overrightarrow u } \right| + \left| {\overrightarrow v } \right|,\) ta suy ra

    \(A = \sqrt {{{\left( {x + 1} \right)}^2} + {y^2} + 4}  + \sqrt {{x^2} + {{\left( {y + 1} \right)}^2} + 1} \)

    \(\ge \sqrt {11} .\)

    Dấu bằng xảy ra khi \(\overrightarrow u ,\overrightarrow v \) cùng hướng, nghĩa là

    \({{x + 1} \over { - x}} = {y \over { - y - 1}} = {2 \over 1} > 0 \Leftrightarrow \left\{ \matrix{  x =  - {1 \over 3} \hfill \cr  y =  - {2 \over 3}. \hfill \cr}  \right.\)

    Vậy A đạt giá trị nhỏ nhất bằng \(\sqrt {11} \) khi \(x =  - {1 \over 3},y =  - {2 \over 3}.\)

      bởi Nguyễn Thị Thu Huệ 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF