Giải bài 9 tr 93 sách GK Toán Hình lớp 12
Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M(1; -1; 2) trên mặt phẳng \((\alpha )\): 2x – y + 2z + 11 = 0.
Hướng dẫn giải chi tiết bài 9
Phương pháp:
Để tìm hinh chiếu của M lên mặt phẳng \((\alpha )\) ta thực hiện các bước sau:
Bước 1: Viết phương trình đường thẳng d đi qua M và vuông góc \((\alpha )\).
Bước 2: Tìm giao điểm của d và \((\alpha )\).
Bước 3: Giao điểm vừa tìm được chính là hình chiếu vuông góc của điểm M lên mặt phẳng \((\alpha )\).
Lời giải:
Ta có lời giải chi tiết bài 9 như sau:
Gọi d là đường thẳng đi qua M và vuông góc với d thì vecto chỉ phương của d là \(\vec{a_d}=\vec{n_\alpha }=(2;-1;2)\)
Phương trình tham số của đường thẳng d là: \(\left\{\begin{matrix} x=1+2t\\ y=-1-t\\ z=2+2t \end{matrix}\right.\)
Giao điểm H của d và \((\alpha )\) là hình chiếu vuông góc của M trên mp\((\alpha )\).
Thay x = 1 + 2t, y = -1 - t, z = 2 + 2t vào phương trình mp\((\alpha )\), ta được
\(2(1+2t)-(-1-t)+2(2+2t)+11=0\Leftrightarrow 9t+18=0\Leftrightarrow t=-2\)
Khi đó x = -3; y = 1; z = -2.
Vậy H(-3; 1; -2).
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 7 trang 92 SGK Hình học 12
Bài tập 8 trang 93 SGK Hình học 12
Bài tập 10 trang 93 SGK Hình học 12
Bài tập 11 trang 93 SGK Hình học 12
Bài tập 12 trang 93 SGK Hình học 12
Bài tập 1 trang 94 SGK Hình học 12
Bài tập 2 trang 94 SGK Hình học 12
Bài tập 3 trang 94 SGK Hình học 12
Bài tập 4 trang 94 SGK Hình học 12
Bài tập 5 trang 95 SGK Hình học 12
Bài tập 6 trang 95 SGK Hình học 12
Bài tập 7 trang 95 SGK Hình học 12
Bài tập 8 trang 95 SGK Hình học 12
Bài tập 9 trang 95 SGK Hình học 12
Bài tập 10 trang 95 SGK Hình học 12
Bài tập 11 trang 96 SGK Hình học 12
Bài tập 12 trang 96 SGK Hình học 12
Bài tập 13 trang 96 SGK Hình học 12
Bài tập 14 trang 97 SGK Hình học 12
Bài tập 15 trang 97 SGK Hình học 12
Bài tập 3.46 trang 131 SBT Hình học 12
Bài tập 3.47 trang 131 SBT Hình học 12
Bài tập 3.48 trang 131 SBT Hình học 12
Bài tập 3.49 trang 132 SBT Hình học 12
Bài tập 3.50 trang 132 SBT Hình học 12
Bài tập 3.51 trang 132 SBT Hình học 12
Bài tập 3.52 trang 132 SBT Hình học 12
Bài tập 3.53 trang 132 SBT Hình học 12
Bài tập 3.54 trang 132 SBT Hình học 12
Bài tập 3.56 trang 132 SBT Hình học 12
Bài tập 3.57 trang 132 SBT Hình học 12
Bài tập 3.58 trang 132 SBT Hình học 12
Bài tập 3.59 trang 133 SBT Toán 12
Bài tập 3.60 trang 133 SBT Toán 12
Bài tập 3.61 trang 133 SBT Toán 12
Bài tập 3.62 trang 133 SBT Toán 12
Bài tập 3.63 trang 133 SBT Toán 12
Bài tập 3.64 trang 133 SBT Toán 12
Bài tập 3.65 trang 133 SBT Toán 12
Bài tập 3.66 trang 134 SBT Toán 12
Bài tập 3.67 trang 134 SBT Toán 12
Bài tập 3.68 trang 134 SBT Toán 12
Bài tập 3.69 trang 134 SBT Toán 12
Bài tập 3.70 trang 134 SBT Toán 12
Bài tập 3.71 trang 134 SBT Toán 12
Bài tập 1 trang 114 SGK Hình học 12 NC
Bài tập 2 trang 114 SGK Hình học 12 NC
Bài tập 3 trang 114 SGK Hình học 12 NC
Bài tập 4 trang 114 SGK Hình học 12 NC
Bài tập 5 trang 114 SGK Hình học 12 NC
Bài tập 6 trang 114 SGK Hình học 12 NC
Bài tập 7 trang 114 SGK Hình học 12 NC
Bài tập 8 trang 115 SGK Hình học 12 NC
Bài tập 9 trang 115 SGK Hình học 12 NC
Bài tập 10 trang 115 SGK Hình học 12 NC
Bài tập 11 trang 115 SGK Hình học 12 NC
Bài tập 12 trang 116 SGK Hình học 12 NC
Bài tập 13 trang 116 SGK Hình học 12 NC
Bài tập 14 trang 116 SGK Hình học 12 NC
Bài tập 15 trang 116 SGK Hình học 12 NC
Bài tập 16 trang 116 SGK Hình học 12 NC
Bài tập 17 trang 117 SGK Hình học 12 NC
Bài tập 18 trang 117 SGK Hình học 12 NC
Bài tập 19 trang 117 SGK Hình học 12 NC
Bài tập 20 trang 118 SGK Hình học 12 NC
Bài tập 21 trang 118 SGK Hình học 12 NC
Bài tập 22 trang 118 SGK Hình học 12 NC
Bài tập 23 trang 118 SGK Hình học 12 NC
Bài tập 24 trang 118 SGK Hình học 12 NC
Bài tập 25 trang 119 SGK Hình học 12 NC
Bài tập 26 trang 119 SGK Hình học 12 NC
Bài tập 27 trang 119 SGK Hình học 12 NC
Bài tập 28 trang 120 SGK Hình học 12 NC
Bài tập 29 trang 120 SGK Hình học 12 NC
Bài tập 30 trang 121 SGK Hình học 12 NC
Bài tập 31 trang 121 SGK Hình học 12 NC
Bài tập 32 trang 121 SGK Hình học 12 NC
Bài tập 33 trang 121 SGK Hình học 12 NC
Bài tập 34 trang 122 SGK Hình học 12 NC
Bài tập 35 trang 122 SGK Hình học 12 NC
Bài tập 36 trang 122 SGK Hình học 12 NC
Bài tập 37 trang 123 SGK Hình học 12 NC
Bài tập 38 trang 123 SGK Hình học 12 NC
Bài tập 39 trang 123 SGK Hình học 12 NC
Bài tập 40 trang 124 SGK Hình học 12 NC
-
Cho mặt phẳng \(\left( \alpha \right)\) đi qua hai điểm \(E\left( {4; - 1;1} \right),F\left( {3;1; - 1} \right)\) và song song với trục \(Ox\). Phương trình tổng quát của \(\left( \alpha \right)\) là:
bởi An Vũ 24/05/2021
A. \(x + y = 0\)
B. \(y + z = 0\)
C. \(x + y + z = 0\)
D. \(x + z = 0\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1) và D(1; 1; 0). Xác định tọa độ tâm và bán kính của đường tròn là giao tuyến của mặt cầu (S) với mặt phẳng (ACD).
bởi Goc pho 24/05/2021
Trong không gian Oxyz, cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1) và D(1; 1; 0). Xác định tọa độ tâm và bán kính của đường tròn là giao tuyến của mặt cầu (S) với mặt phẳng (ACD).
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1) và D(1; 1; 0). Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D.
bởi Minh Tú 24/05/2021
Trong không gian Oxyz, cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1) và D(1; 1; 0). Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D.
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho bốn điểm \(A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1), D(4; 1; 0)\). Gọi (S) là mặt cầu đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.
bởi thu trang 25/05/2021
Trong không gian Oxyz, cho bốn điểm \(A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1), D(4; 1; 0)\). Gọi (S) là mặt cầu đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.
Theo dõi (0) 1 Trả lời -
ADMICRO
Cho mặt phẳng \((P): 2x – 3y + 4z – 5 = 0\) và mặt cầu (S): x2 + y2 + z2 + 3x + 4y – 5z + 6 = 0. Xác định tọa độ tâm I và bán kính r của mặt cầu (S).
bởi Thùy Nguyễn 25/05/2021
Cho mặt phẳng \((P): 2x – 3y + 4z – 5 = 0\) và mặt cầu (S): x2 + y2 + z2 + 3x + 4y – 5z + 6 = 0. Xác định tọa độ tâm I và bán kính r của mặt cầu (S).
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho hai mặt phẳng \((\beta )\): \(x + 3ky – z + 2 = 0\) và \((\gamma )\) : \(kx – y + z + 1 = 0\). Tìm giá trị \(k\) để giao tuyến của \((\beta )\) và \((\gamma )\) vuông góc với mặt phẳng \((\alpha )\): x – y – 2z + 5 = 0.
bởi Đặng Ngọc Trâm 24/05/2021
Trong không gian Oxyz, cho hai mặt phẳng \((\beta )\): \(x + 3ky – z + 2 = 0\) và \((\gamma )\) : \(kx – y + z + 1 = 0\). Tìm \(k\) để giao tuyến của \((\beta )\) và \((\gamma )\) vuông góc với mặt phẳng \((\alpha )\): x – y – 2z + 5 = 0.
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho ba điểm A(1; 0; 0), B(1; 1; 1), \(C\left( {\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}} \right)\). Hãy viết phương trình mặt phẳng \((\beta )\) chứa AB và vuông góc với \((\alpha )\).
bởi Phan Quân 24/05/2021
Trong không gian Oxyz, cho ba điểm A(1; 0; 0), B(1; 1; 1), \(C\left( {\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}} \right)\). Hãy viết phương trình mặt phẳng \((\beta )\) chứa AB và vuông góc với \((\alpha )\).
Theo dõi (0) 1 Trả lời