Giải bài 13 tr 96 sách GK Toán Hình lớp 12
Cho hai đường thẳng: \(d_1:\left\{\begin{matrix} x=1+2t\\ y=2+3t\\ z=3+4t \end{matrix}\right.\) và \(d_2:\left\{\begin{matrix} x=3+4t'\\ y=5+6t'\\ z=7+8t' \end{matrix}\right.\)
Trong các mệnh đề sau, mệnh đề nào đúng?
(A) \(d_1\perp d_2\)
(B) \(d_1 // d_2\)
(C) \(d_1 \equiv d_2\)
(D) \(d_1\) và \(d_2\) chéo nhau.
Hướng dẫn giải chi tiết
\(d_1\) và \(d_2\) lần lượt có vecto chỉ phương là:
\(\vec{a}_1=(2;3;4)\) và \(\vec{a}_2=(4;6;8)\)
Ta có \(\vec{a}_1\) cùng phương \(\vec{a}_2\)
\(d_1\) qua \(M_0(1;2;3)\in d_2\) (ứng với \(t'=-\frac{1}{2}\))
Vậy \(d_1 \equiv d_2\)
⇒ Chọn đáp án C.
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 11 trang 96 SGK Hình học 12
Bài tập 12 trang 96 SGK Hình học 12
Bài tập 14 trang 97 SGK Hình học 12
Bài tập 15 trang 97 SGK Hình học 12
Bài tập 3.46 trang 131 SBT Hình học 12
Bài tập 3.47 trang 131 SBT Hình học 12
Bài tập 3.48 trang 131 SBT Hình học 12
Bài tập 3.49 trang 132 SBT Hình học 12
Bài tập 3.50 trang 132 SBT Hình học 12
Bài tập 3.51 trang 132 SBT Hình học 12
Bài tập 3.52 trang 132 SBT Hình học 12
Bài tập 3.53 trang 132 SBT Hình học 12
Bài tập 3.54 trang 132 SBT Hình học 12
Bài tập 3.56 trang 132 SBT Hình học 12
Bài tập 3.57 trang 132 SBT Hình học 12
Bài tập 3.58 trang 132 SBT Hình học 12
Bài tập 3.59 trang 133 SBT Toán 12
Bài tập 3.60 trang 133 SBT Toán 12
Bài tập 3.61 trang 133 SBT Toán 12
Bài tập 3.62 trang 133 SBT Toán 12
Bài tập 3.63 trang 133 SBT Toán 12
Bài tập 3.64 trang 133 SBT Toán 12
Bài tập 3.65 trang 133 SBT Toán 12
Bài tập 3.66 trang 134 SBT Toán 12
Bài tập 3.67 trang 134 SBT Toán 12
Bài tập 3.68 trang 134 SBT Toán 12
Bài tập 3.69 trang 134 SBT Toán 12
Bài tập 3.70 trang 134 SBT Toán 12
Bài tập 3.71 trang 134 SBT Toán 12
Bài tập 1 trang 114 SGK Hình học 12 NC
Bài tập 2 trang 114 SGK Hình học 12 NC
Bài tập 3 trang 114 SGK Hình học 12 NC
Bài tập 4 trang 114 SGK Hình học 12 NC
Bài tập 5 trang 114 SGK Hình học 12 NC
Bài tập 6 trang 114 SGK Hình học 12 NC
Bài tập 7 trang 114 SGK Hình học 12 NC
Bài tập 8 trang 115 SGK Hình học 12 NC
Bài tập 9 trang 115 SGK Hình học 12 NC
Bài tập 10 trang 115 SGK Hình học 12 NC
Bài tập 11 trang 115 SGK Hình học 12 NC
Bài tập 12 trang 116 SGK Hình học 12 NC
Bài tập 13 trang 116 SGK Hình học 12 NC
Bài tập 14 trang 116 SGK Hình học 12 NC
Bài tập 15 trang 116 SGK Hình học 12 NC
Bài tập 16 trang 116 SGK Hình học 12 NC
Bài tập 17 trang 117 SGK Hình học 12 NC
Bài tập 18 trang 117 SGK Hình học 12 NC
Bài tập 19 trang 117 SGK Hình học 12 NC
Bài tập 20 trang 118 SGK Hình học 12 NC
Bài tập 21 trang 118 SGK Hình học 12 NC
Bài tập 22 trang 118 SGK Hình học 12 NC
Bài tập 23 trang 118 SGK Hình học 12 NC
Bài tập 24 trang 118 SGK Hình học 12 NC
Bài tập 25 trang 119 SGK Hình học 12 NC
Bài tập 26 trang 119 SGK Hình học 12 NC
Bài tập 27 trang 119 SGK Hình học 12 NC
Bài tập 28 trang 120 SGK Hình học 12 NC
Bài tập 29 trang 120 SGK Hình học 12 NC
Bài tập 30 trang 121 SGK Hình học 12 NC
Bài tập 31 trang 121 SGK Hình học 12 NC
Bài tập 32 trang 121 SGK Hình học 12 NC
Bài tập 33 trang 121 SGK Hình học 12 NC
Bài tập 34 trang 122 SGK Hình học 12 NC
Bài tập 35 trang 122 SGK Hình học 12 NC
Bài tập 36 trang 122 SGK Hình học 12 NC
Bài tập 37 trang 123 SGK Hình học 12 NC
Bài tập 38 trang 123 SGK Hình học 12 NC
Bài tập 39 trang 123 SGK Hình học 12 NC
Bài tập 40 trang 124 SGK Hình học 12 NC
-
Vectơ \(\overrightarrow a = \left( {1;3;4} \right)\), tìm vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow a \)
bởi Nhật Nam 07/05/2021
A. \(\overrightarrow b = \left( { - 2; - 6; - 8} \right).\)
B. \(\overrightarrow b = \left( { - 2; - 6;8} \right).\)
C. \(\overrightarrow b = \left( { - 2;6;8} \right).\)
D. \(\overrightarrow b = \left( {2; - 6; - 8} \right).\)
Theo dõi (0) 1 Trả lời -
Gọi \(\varphi \) là góc giữa hai vectơ \(\overrightarrow a = \left( {1;2;0} \right)\) và \(\overrightarrow b = \left( {2;0; - 1} \right)\), khi đó \(\cos \varphi \) bằng bao nhiêu?
bởi Anh Nguyễn 06/05/2021
A. 0.
B. \(\dfrac{2}{5}\).
C. \(\dfrac{2}{{\sqrt 5 }}\).
D. \( - \dfrac{2}{5}\).
Theo dõi (0) 1 Trả lời -
Cho \((S)\) là mặt cầu tâm \(I(2 ; 1 ; -1)\) và tiếp xúc với mặt phẳng \((α)\) có phương trình : \(2x - 2y - z + 3 = 0\). Bán kính của \((S)\) là:
bởi Long lanh 06/05/2021
(A) \(2\) ;
(B) \({2 \over 3}\);
(C) \({4 \over 3}\);
(D) \({2 \over 9}\) .
Theo dõi (0) 1 Trả lời -
Cho mặt phẳng \((α) : 2x + y + 3z + 1= 0\) và đường thẳng \(d\) có phương trình tham số: \(\left\{ \matrix{ x = - 3 + t \hfill \cr y = 2 - 2t \hfill \cr z = 1. \hfill \cr} \right.\) Trong các mệnh đề sau, mệnh đề nào đúng?
bởi Trung Phung 07/05/2021
(A) \(d ⊥ (α)\) ;
(B) \(d\) cắt \( (α)\) ;
(C) \(d // (α)\) ;
(D) \(d ⊂ (α)\).
Theo dõi (0) 1 Trả lời -
ADMICRO
Cho hai đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 3t\\z = 3 + 4t\end{array} \right.\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 3 + 4t'\\y = 5 + 6t'\\z = 7 + 8t'\end{array} \right.\) Trong các mệnh đề sau, mệnh đề nào đúng?
bởi Nguyễn Thanh Trà 06/05/2021
(A) d1⊥ d2
(B) d1 // d2
(C) d1 ≡ d2
(D) d1 và d2 chéo nhau.
Theo dõi (0) 1 Trả lời -
Cho \(d\) là đường thẳng đi qua điểm \(A(1 ; 2 ; 3)\) và vuông góc với mặt phẳng \((α): 4x + 3y - 7z + 1 = 0\). Phương trình tham số của d là:
bởi bach dang 07/05/2021
(A)\(\left\{ \matrix{x = - 1 + 4t \hfill \cr y = - 2 + 3t \hfill \cr z = - 3 - 7t \hfill \cr} \right.\);
(B)\(\left\{ \matrix{x = 1 + 4t \hfill \cr y = 2 + 3t \hfill \cr z = 3 - 7t \hfill \cr} \right.\);
(C)\(\left\{ \matrix{x = 1 + 3t \hfill \cr y = 2 - 4t \hfill \cr z = 3 - 7t \hfill \cr} \right.\);
(D)\(\left\{ \matrix{x = - 1 + 8t \hfill \cr y = - 2 + 6t \hfill \cr z = - 3 - 14t. \hfill \cr} \right.\)
Theo dõi (0) 1 Trả lời -
Cho đường thẳng \(△\) đi qua điểm \(M(2 ; 0 ; -1)\) và có vectơ chỉ phương \(\overrightarrow a = (4 ; -6 ; 2)\). Phương trình tham số của đường thẳng \(△\) là:
bởi Trần Thị Trang 06/05/2021
\((A)\left\{ \matrix{x = - 2 + 4t \hfill \cr y = - 6t \hfill \cr z = 1 + 2t \hfill \cr} \right.\)
\((B)\left\{ \matrix{x = - 2 + 2t \hfill \cr y = - 3t \hfill \cr z = 1 + t \hfill \cr} \right.\);
\((C)\left\{ \matrix{x = 2 + 2t \hfill \cr y = - 3t \hfill \cr z = - 1 + t \hfill \cr} \right.\);
\((D)\left\{ \matrix{x = 4 + 2t \hfill \cr y = - 6 - 3t \hfill \cr z = 2 + t \hfill \cr} \right.\).
Theo dõi (0) 1 Trả lời