Giải bài 3 tr 94 sách GK Toán Hình lớp 12
Trong không gian \(Oxyz\) cho ba vectơ \(\overrightarrow a = ( - 1;1;0)\), \(\overrightarrow b = (1;1;0)\) và \(\overrightarrow c = (1;1;1)\)
Cho hình bình hành \(OADB\) có \(\overrightarrow {OA} \) = \(\overrightarrow a \), \(\overrightarrow {OB} = \overrightarrow b \) (\(O\) là gốc toạ độ). Toạ độ của tâm hình bình hành \(OADB\) là:
(A) \((0 ; 1 ; 0)\)
(B) \((1 ; 0 ; 0)\)
(C) \((1 ; 0 ; 1)\)
(D) \((1 ; 1 ; 0)\).
Gợi ý trả lời bài 3
Gọi \(I\) là tâm của hình bình hành ta có:
\(\begin{array}{l}
\overrightarrow {OA} + \overrightarrow {OB} = 2\overrightarrow {OI} \\
\Rightarrow \overrightarrow {OI} = \dfrac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) = \dfrac{1}{2}\left( {\overrightarrow a + \overrightarrow b } \right)\\
= \dfrac{1}{2}\left( {0;2;0} \right) = \left( {0;1;0} \right)
\end{array}\)
Vậy \(I(0;1;0)\)
Chọn (A).
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 1 trang 94 SGK Hình học 12
Bài tập 2 trang 94 SGK Hình học 12
Bài tập 4 trang 94 SGK Hình học 12
Bài tập 5 trang 95 SGK Hình học 12
Bài tập 6 trang 95 SGK Hình học 12
Bài tập 7 trang 95 SGK Hình học 12
Bài tập 8 trang 95 SGK Hình học 12
Bài tập 9 trang 95 SGK Hình học 12
Bài tập 10 trang 95 SGK Hình học 12
Bài tập 11 trang 96 SGK Hình học 12
Bài tập 12 trang 96 SGK Hình học 12
Bài tập 13 trang 96 SGK Hình học 12
Bài tập 14 trang 97 SGK Hình học 12
Bài tập 15 trang 97 SGK Hình học 12
Bài tập 3.46 trang 131 SBT Hình học 12
Bài tập 3.47 trang 131 SBT Hình học 12
Bài tập 3.48 trang 131 SBT Hình học 12
Bài tập 3.49 trang 132 SBT Hình học 12
Bài tập 3.50 trang 132 SBT Hình học 12
Bài tập 3.51 trang 132 SBT Hình học 12
Bài tập 3.52 trang 132 SBT Hình học 12
Bài tập 3.53 trang 132 SBT Hình học 12
Bài tập 3.54 trang 132 SBT Hình học 12
Bài tập 3.56 trang 132 SBT Hình học 12
Bài tập 3.57 trang 132 SBT Hình học 12
Bài tập 3.58 trang 132 SBT Hình học 12
Bài tập 3.59 trang 133 SBT Toán 12
Bài tập 3.60 trang 133 SBT Toán 12
Bài tập 3.61 trang 133 SBT Toán 12
Bài tập 3.62 trang 133 SBT Toán 12
Bài tập 3.63 trang 133 SBT Toán 12
Bài tập 3.64 trang 133 SBT Toán 12
Bài tập 3.65 trang 133 SBT Toán 12
Bài tập 3.66 trang 134 SBT Toán 12
Bài tập 3.67 trang 134 SBT Toán 12
Bài tập 3.68 trang 134 SBT Toán 12
Bài tập 3.69 trang 134 SBT Toán 12
Bài tập 3.70 trang 134 SBT Toán 12
Bài tập 3.71 trang 134 SBT Toán 12
Bài tập 1 trang 114 SGK Hình học 12 NC
Bài tập 2 trang 114 SGK Hình học 12 NC
Bài tập 3 trang 114 SGK Hình học 12 NC
Bài tập 4 trang 114 SGK Hình học 12 NC
Bài tập 5 trang 114 SGK Hình học 12 NC
Bài tập 6 trang 114 SGK Hình học 12 NC
Bài tập 7 trang 114 SGK Hình học 12 NC
Bài tập 8 trang 115 SGK Hình học 12 NC
Bài tập 9 trang 115 SGK Hình học 12 NC
Bài tập 10 trang 115 SGK Hình học 12 NC
Bài tập 11 trang 115 SGK Hình học 12 NC
Bài tập 12 trang 116 SGK Hình học 12 NC
Bài tập 13 trang 116 SGK Hình học 12 NC
Bài tập 14 trang 116 SGK Hình học 12 NC
Bài tập 15 trang 116 SGK Hình học 12 NC
Bài tập 16 trang 116 SGK Hình học 12 NC
Bài tập 17 trang 117 SGK Hình học 12 NC
Bài tập 18 trang 117 SGK Hình học 12 NC
Bài tập 19 trang 117 SGK Hình học 12 NC
Bài tập 20 trang 118 SGK Hình học 12 NC
Bài tập 21 trang 118 SGK Hình học 12 NC
Bài tập 22 trang 118 SGK Hình học 12 NC
Bài tập 23 trang 118 SGK Hình học 12 NC
Bài tập 24 trang 118 SGK Hình học 12 NC
Bài tập 25 trang 119 SGK Hình học 12 NC
Bài tập 26 trang 119 SGK Hình học 12 NC
Bài tập 27 trang 119 SGK Hình học 12 NC
Bài tập 28 trang 120 SGK Hình học 12 NC
Bài tập 29 trang 120 SGK Hình học 12 NC
Bài tập 30 trang 121 SGK Hình học 12 NC
Bài tập 31 trang 121 SGK Hình học 12 NC
Bài tập 32 trang 121 SGK Hình học 12 NC
Bài tập 33 trang 121 SGK Hình học 12 NC
Bài tập 34 trang 122 SGK Hình học 12 NC
Bài tập 35 trang 122 SGK Hình học 12 NC
Bài tập 36 trang 122 SGK Hình học 12 NC
Bài tập 37 trang 123 SGK Hình học 12 NC
Bài tập 38 trang 123 SGK Hình học 12 NC
Bài tập 39 trang 123 SGK Hình học 12 NC
Bài tập 40 trang 124 SGK Hình học 12 NC
-
Không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), điểm \(A\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\) và cắt mặt cầu \(\left( S \right)\) theo thiết diện là hình tròn \(\left( C \right)\)có diện tích nhỏ nhất ?
bởi Ngoc Son 06/05/2021
A.\(\left( P \right):x + 2y + 3z - 6 = 0\).
B. \(\left( P \right):x + 2y + z - 2 = 0\).
C.\(\left( P \right):3x + 2y + 2z - 4 = 0\).
D. \(\left( P \right):x - 2y + 3z - 6 = 0\).
Theo dõi (0) 1 Trả lời -
Không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Xác định phương trình của \((\alpha )\) là:
bởi hành thư 07/05/2021
A.\(x + 3z = 0\).
B.\(x + 2z = 0\).
C. \(x - 3z = 0\).
D.\(x = 0\).
Theo dõi (0) 1 Trả lời -
Trong không gian với hệ trục tọa độ \(Oxyz\), gọi \((P)\)là mặt phẳng song song với mặt phẳng \(Oxz\) và cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\) theo đường tròn có chu vi lớn nhất. Xác định phương trình của \((P)\):
bởi Huy Tâm 06/05/2021
A. \(x - 2y + 1 = 0\).
B. \(y - 2 = 0\).
C. \(y + 1 = 0\).
D. \(y + 2 = 0\).
Theo dõi (0) 1 Trả lời -
Trong không gian \({\left( {x + 4} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 6} \right)^2} = 18.\), cho mặt phẳng \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 9.\): \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 16.\) và đường thẳng \(d\):\(N( - 5;7;0)\). Hãy cho biết với giá trị nào của \(\vec u = (2; - 2;1)\)thì \(\overrightarrow {MN} = ( - 9;6; - 6)\) cắt \(H\)
bởi Minh Hanh 07/05/2021
A.\(\left( S \right)\).
B.\(\left( S \right)\) .
C.\({R^2} = M{H^2} + {\left( {\dfrac{{AB}}{2}} \right)^2} = 18\) .
D.\(d(M,d) = 3\).
Theo dõi (0) 1 Trả lời -
ADMICRO
Không gian với hệ toạ độ \(Oxyz\),cho hai đường thẳng \({d_1},{d_2}\)lần lượt có phương trình \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y - 2}}{1} = \dfrac{{z - 3}}{3}\), \({d_2}:\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{{ - 1}} = \dfrac{{z - 1}}{4}\). Hãy xác định phương trình mặt phẳng \(\left( \alpha \right)\) cách đều hai đường thẳng \({d_1},{d_2}\) là:
bởi Huy Hạnh 06/05/2021
A.\(7x - 2y - 4z = 0\).
B.\(7x - 2y - 4z + 3 = 0\).
C. \(2x + y + 3z + 3 = 0\).
D.\(14x - 4y - 8z + 3 = 0\).
Theo dõi (0) 1 Trả lời -
Không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta \right):2x - 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; - 3;4} \right)\) một khoảng \(k = 3\). Cho biết phương trình của mặt phẳng \(\left( \alpha \right)\) là:
bởi Pham Thi 06/05/2021
A.\(2x - 4y + 4z - 5 = 0\) hoặc \(2x - 4y + 4z - 13 = 0\).
B. \(x - 2y + 2z - 25 = 0\).
C.\(x - 2y + 2z - 7 = 0\).
D.\(x - 2y + 2z - 25 = 0\) hoặc \(x - 2y + 2z - 7 = 0\).
Theo dõi (0) 1 Trả lời -
Không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\) là mặt phẳng qua \(G\left( {1;2;3} \right)\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) (khác gốc \(O\)) sao cho \(G\) là trọng tâm của tam giác \(ABC\). Khi đó mặt phẳng \(\left( \alpha \right)\) có phương trình: là đáp án?
bởi hoàng duy 06/05/2021
A.\(3x + 6y + 2z + 18 = 0\).
B.\(6x + 3y + 2z - 18 = 0\).
C.\(2x + y + 3z - 9 = 0\).
D.\(6x + 3y + 2z + 9 = 0\).
Theo dõi (0) 1 Trả lời