Giải bài 2 tr 126 sách GK Toán GT lớp 12
a) Phát biểu định nghĩa tích phân của hàm số f(x) trên một đoạn.
b) Nêu các tính chất của tích phân. Cho ví dụ minh họa.
Gợi ý trả lời bài 2
Câu a.
Định nghĩa tích phân của hàm số f(x) trên một đoạn:
Cho hàm \(f(x)\) liên tục trên khoảng K và a, b là hai số bất kỳ thuộc K. Nếu \(F(x)\) là một nguyên hàm của \(f(x)\) thì hiệu số \(F(b)-F(a)\) được gọi là tích phân của \(f(x)\) từ a đến b và ký hiệu là \(\int\limits_a^b {f(x)dx} .\) Trong trường hợp \(a<b\) thì \(\int\limits_a^b {f(x)dx}\) là tích phân của \(f\) trên \([a;b].\)
Câu b.
Các tính chất của tích phân:
Cho các hàm số \(f(x),\,g(x)\) liên tục trên K và \(a,b,c\) là ba số thuộc K.
- \(\,\int\limits_a^a {f(x)dx = 0}\)
- \(\int\limits_a^b {f(x)dx = - \int\limits_b^a {f(x)dx} }\)
- \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} }\)
- \(\int\limits_a^b {k.f(x)dx = k\int\limits_a^b {f(x)dx} }\)
- \(\int\limits_a^b {[f(x) \pm g(x)]dx = \int\limits_a^b {f(x)dx} \pm \int\limits_a^b {g(x)dx} }\)
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 1 trang 126 SGK Giải tích 12
Bài tập 3 trang 126 SGK Giải tích 12
Bài tập 4 trang 126 SGK Giải tích 12
Bài tập 5 trang 127 SGK Giải tích 12
Bài tập 6 trang 127 SGK Giải tích 12
Bài tập 7 trang 127 SGK Giải tích 12
Bài tập 1 trang 128 SGK Giải tích 12
Bài tập 2 trang 128 SGK Giải tích 12
Bài tập 3 trang 128 SGK Giải tích 12
Bài tập 4 trang 128 SGK Giải tích 12
Bài tập 5 trang 128 SGK Giải tích 12
Bài tập 6 trang 128 SGK Giải tích 12
Bài tập 41 trang 175 SGK Toán 12 NC
Bài tập 42 trang 175 SGK Toán 12 NC
Bài tập 43 trang 176 SGK Toán 12 NC
Bài tập 44 trang 176 SGK Toán 12 NC
Bài tập 45 trang 176 SGK Toán 12 NC
Bài tập 46 trang 176 SGK Toán 12 NC
Bài tập 47 trang 176 SGK Toán 12 NC
Bài tập 48 trang 176 SGK Toán 12 NC
Bài tập 49 trang 176 SGK Toán 12 NC
Bài tập 50 trang 176 SGK Toán 12 NC
Bài tập 51 trang 176 SGK Toán 12 NC
Bài tập 52 trang 177 SGK Toán 12 NC
Bài tập 53 trang 177 SGK Toán 12 NC
Bài tập 54 trang 177 SGK Toán 12 NC
Bài tập 55 trang 177 SGK Toán 12 NC
Bài tập 56 trang 177 SGK Toán 12 NC
Bài tập 57 trang 177 SGK Toán 12 NC
Bài tập 58 trang 177 SGK Toán 12 NC
Bài tập 59 trang 177 SGK Toán 12 NC
Bài tập 60 trang 178 SGK Toán 12 NC
Bài tập 61 trang 178 SGK Toán 12 NC
Bài tập 62 trang 178 SGK Toán 12 NC
Bài tập 63 trang 178 SGK Toán 12 NC
Bài tập 64 trang 178 SGK Toán 12 NC
Bài tập 65 trang 178 SGK Toán 12 NC
Bài tập 66 trang 179 SGK Toán 12 NC
Bài tập 67 trang 179 SGK Toán 12 NC
Bài tập 3.43 trang 180 SBT Toán 12
Bài tập 3.44 trang 180 SBT Toán 12
Bài tập 3.45 trang 181 SBT Toán 12
Bài tập 3.46 trang 181 SBT Toán 12
Bài tập 3.47 trang 181 SBT Toán 12
Bài tập 3.48 trang 181 SBT Toán 12
Bài tập 3.49 trang 182 SBT Toán 12
Bài tập 3.50 trang 182 SBT Toán 12
Bài tập 3.51 trang 182 SBT Toán 12
Bài tập 3.52 trang 182 SBT Toán 12
Bài tập 3.53 trang 183 SBT Toán 12
Bài tập 3.54 trang 183 SBT Toán 12
Bài tập 3.55 trang 183 SBT Toán 12
Bài tập 3.56 trang 183 SBT Toán 12
Bài tập 3.67 trang 183 SBT Toán 12
Bài tập 3.58 trang 184 SBT Toán 12
-
Nếu có \(\displaystyle \int\limits_a^d {f\left( x \right)dx} = 5,\int\limits_b^d {f\left( x \right)dx} = 2\) với \(\displaystyle a < d < b\) thì \(\displaystyle \int\limits_a^b {f\left( x \right)dx} \) bằng
bởi Bao Nhi 25/04/2022
Theo dõi (0) 1 Trả lời -
Tính diện tích hình phẳng giới hạn bởi các đường sau đây: \(\displaystyle y = {x^3} - {x^2}\) và \(\displaystyle y = \frac{1}{9}(x - 1)\)
bởi Anh Hà 25/04/2022
Theo dõi (0) 1 Trả lời -
Tính diện tích hình phẳng giới hạn bởi các đường sau đây: \(\displaystyle y = x - 1 + \frac{{\ln x}}{x},y = x - 1\) và \(\displaystyle x = e\)
bởi Lê Tấn Thanh 26/04/2022
Theo dõi (0) 1 Trả lời -
Tính tích phân sau đây: \(\displaystyle \int\limits_0^{\frac{\pi }{4}} {\frac{{x\sin x + (x + 1)\cos x}}{{x\sin x + \cos x}}dx} \)
bởi Anh Trần 26/04/2022
Theo dõi (0) 1 Trả lời -
ADMICRO
Tính tích phân sau đây: \(\displaystyle \int\limits_0^1 {\frac{{x + 2}}{{{x^2} + 2x + 1}}\ln (x + 1)dx} \)
bởi Thành Tính 26/04/2022
Theo dõi (0) 1 Trả lời -
Tính tích phân sau đây: \(\displaystyle \int\limits_{\frac{1}{2}}^1 {\frac{{{e^x}}}{{{e^{2x}} - 1}}dx} \)
bởi Huong Hoa Hồng 25/04/2022
Theo dõi (0) 1 Trả lời -
Tính tích phân sau đây: \(\displaystyle \int\limits_0^{\frac{\pi }{4}} {\cos 2x} .{\cos ^2}xdx\)
bởi hai trieu 26/04/2022
Theo dõi (0) 1 Trả lời