Phần hướng dẫn giải bài tập SGK Hình học 9 Chương 1 Bài 6 Ôn tập chương Hệ thức lượng trong tam giác vuông sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các dạng bài tập từ SGK Toán 9.
-
Bài tập I.1 trang 123 SBT Toán 9 Tập 1
Tam giác ABC có \(\widehat A = {105^0};\widehat B = {45^0}\), BC = 4cm. Tính độ dài các cạnh AB, AC.
-
Bài tập I.2 trang 123 SBT Toán 9 Tập 1
Cho hình vuông ABCD có cạnh bằng 2a. Gọi M, N lần lượt là trung điểm của BC, CD. Tính cos(MAN).
-
Bài tập I.3 trang 123 SBT Toán 9 Tập 1
Cho tam giác ABC cân tại A, đường cao BH. Hãy tính góc A và các cạnh AB, BC, nếu biết BH = h, \(\widehat C = \alpha \)
-
Bài tập I.4 trang 123 SBT Toán 9 Tập 1
Hình bình hành ABCD có \(\widehat A = {120^0}\), AB = a, BC = b. Các đường phân giác của bốn góc A, B, C, D cắt nhau tạo thành tứ giác MNPQ. Tính diện tích tứ giác MNPQ.
- VIDEOYOMEDIA
-
Bài tập I.5 trang 123 SBT Toán 9 Tập 1
Cho tam giác ABC vuông tại C có ∠B = 370. Gọi I là giao điểm của cạnh BC với đường trung trực của AB. Hãy tính AB, AC nếu biết BI = 20.
-
Bài tập 80 trang 119 SBT Toán 9 Tập 1
Hãy tính sin α và tg α nếu:
a. cos α = 5/13
b. cos α = 15/17
c. cos α = 0,6
-
Bài tập 81 trang 119 SBT Toán 9 Tập 1
Hãy đơn giản các biểu thức:
a. 1 – sin2α
b. (1 - cos α)(1 + cos α)
c. 1 + sin2α + cos2α
d. sin α - sin α cos2α
e. sin4α + cos4α + 2sin2α cos2α
g. tg2α – sin2α tg2α
h. cos2α + tg2α cos2α
i. tg2α.(2cos2α + sin2α – 1)
-
Bài tập 82 trang 120 SBT Toán 9 Tập 1
Trong một tam giác với các cạnh có độ dài 6, 7, 9, kẻ đường cao đến cạnh lớn nhất. Hãy tìm độ dài đường cao này và các đoạn thẳng mà nó định ra trên cạnh lớn nhất đó.
-
Bài tập 83 trang 120 SBT Toán 9 Tập 1
Hãy tìm độ dài cạnh đáy của một tam giác cân, nếu đường cao kẻ xuống đáy có độ dài là 5 và đường cao kẻ xuống cạnh bên có độ dài là 6.
-
Bài tập 84 trang 120 SBT Toán 9 Tập 1
Tam giác ABC vuông tại A, AB = a, AC = 3a. Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC
a. Chứng minh DE/DB = DB/DC
b. Chứng minh tam giác BDE đồng dạng tam giác CDB
c. Tính tổng \(\widehat {AEB} + \widehat {BCD}\) bằng 2 cách:
Cách 1: Sử dụng kết quả ở câu b
Cách 2: Dùng máy tính bỏ túi hoặc bảng lượng giác
-
Bài tập 85 trang 120 SBT Toán 9 Tập 1
Tính góc α tạo bởi hai mái nhà, biết rằng mỗi mái nhà dài 2,34m và cao 0,8m
-
Bài tập 86 trang 120 SBT Toán 9 Tập 1
Cho hình bên.
Biết AD ⊥ DC, \(\widehat {DAC} = {74^0};\widehat {AXB} = {123^0}\) , AD = 2,8cm, AX = 5,5cm, BX = 4,1cm.
a. Tính AC
b. Gọi Y là điểm trên AX sao cho DY // BX. Hãy tính XY
c. Tính diện tích tam giác BCX
-
Bài tập 87 trang 120 SBT Toán 9 Tập 1
Tam giác ABC có \(\widehat A = {20^0};\widehat B = {30^0}\) , AB = 60cm. Đường vuông góc kẻ từ C đến AB cắt AB tại P. Hãy tìm:
a. CP
b. AP, BP
-
Bài tập 88 trang 121 SBT Toán 9 Tập 1
Điểm hạ cánh của một máy bay trực thăng ở giữa hai người quan sát A và B. Biết khoảng cách giữa hai người này là 300m, góc “nâng” để nhìn thấy máy bay tại vị trí A là 400 và tại vị trí B là 300 (hình bên). Hãy tìm độ cao của máy bay
-
Bài tập 89 trang 121 SBT Toán 9 Tập 1
Cho hình thang với đáy nhỏ là 15cm, hai cạnh bên bằng nhau và bằng 25cm, góc tù bằng 1200. Tính chu vi và diện tích hình thang đó.
-
Bài tập 90 trang 121 SBT Toán 9 Tập 1
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm.
a. Tính BC, góc B , góc C
b. Phân giác của góc A cắt BC ở D. Tính BD, CD
c. Từ D kẻ DE và DF lần lượt vuông góc với AB và AC. Tứ giác AEDF là hình gì? Tính chu vi và diện tích tứ giác AEDF
-
Bài tập 91 trang 121 SBT Toán 9 Tập 1
Cho hình thang ABCD có hai cạnh bên là AD và BC bằng nhau, đường chéo AC vuông góc với cạnh bên BC
Biết AD = 5a, AC = 12a
a. Tính \(\frac{{\sin \widehat B + \cos \widehat B}}{{\sin \widehat B - \cos \widehat B}}\)
b. Tính chiều cao của hình thang ABCD
-
Bài tập 92 trang 121 SBT Toán 9 Tập 1
Cho tam giác ABC, AB = AC = 10cm, BC = 16cm. Trên đường cao AH lấy điểm I sao cho AI =\(\frac{1}{3}\).AH. Vẽ tia Cx song song với AH, Cx cắt tia BI tại D
a. Tính các góc của tam giác ABC
b. Tính diện tích tứ giác ABCD
-
Bài tập 93 trang 121 SBT Toán 9 Tập 1
Cho tam giác ABC, biết AB = 21cm, AC = 28cm, BC = 35cm.
a. Chứng minh tam giác ABC vuông
b. Tính sin\({\widehat B}\), sin\({\widehat C}\)
-
Bài tập 94 trang 122 SBT Toán 9 Tập 1
Cho hình thang ABCD. Biết hai đáy AB = a và CD = 2a, cạnh bên AD = a, góc A = 900
a. Chứng minh tg\({\widehat C}\) = 1
b. Tính tỉ số diện tích tam giác BCD và diện tích hình thang ABCD
c. Tính tỉ số diện tích tam giác ABC và diện tích tam giác BCD
-
Bài tập 95 trang 122 SBT Toán 9 Tập 1
Cho tam giác ABC có góc B bằng 1200, BC = 12cm, AB = 6cm. Đường phân giác của góc B cắt cạnh AC tại D.
a. Tính độ dài đường phân giác BD
b. Gọi M là trung điểm của BC. Chứng minh AM ⊥ BD
-
Bài tập 96 trang 122 SBT Toán 9 Tập 1
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a. Tính độ dài đoạn thẳng DE
b. Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c. Tính diện tích tứ giác DENM
-
Bài tập 97 trang 122 SBT Toán 9 Tập 1
Cho tam giác ABC vuông ở A, góc C = 300, BC = 10cm
a. Tính AB, AC
b. Từ A kẻ AM, AN lần lượt vuông góc với các đường phân giác trong và ngoài của góc B. Chứng minh MN // BC và MN = AB
c. Chứng minh hai tam giác MAB và ABC đồng dạng. Tìm tỉ số đồng dạng
-
Bài tập 98 trang 122 SBT Toán 9 Tập 1
Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5cm.
a. Chứng minh tam giác ABC vuông ở A. Tính các góc B, C và đường cao AH của tam giác
b. Tìm tập hợp các điểm M sao cho SABC = SBMC
-
Câu hỏi 1 trang 91 SGK Toán 9 Tập 1
Cho hình 36. Hãy viết hệ thức giữa:
a) Cạnh huyền, cạnh góc vuông và hình chiếu của nó trên cạnh huyền.
b) Các cạnh góc vuông p, r và đường cao h.
c) Đường cao h và hình chiếu của các cạnh góc vuông trên cạnh huyền p', r'
-
Câu hỏi 2 trang 91 SGK Toán 9 Tập 1
Cho hình 37.
a) Hãy viết công thức tính các tỉ số lượng giác của góc α
b) Hãy viết hệ thức giữa các tỉ số lượng giác của góc α và các tỉ số lượng giác của góc β.
-
Câu hỏi 3 trang 91 SGK Toán 9 Tập 1
Xem hình 37.
a) Hãy viết công thức tính các cạnh góc vuông b và c theo cạnh huyền a và tỉ số lượng giác của các góc \(α, β.\)
b) Hãy viết công thức tính mỗi cạnh góc vuông theo cạnh góc vuông kia và tỉ số lượng giác của các góc \(α, β.\)
-
Câu hỏi 4 trang 91 SGK Toán 9 Tập 1
Để giải một tam giác vuông, cần biết ít nhất mấy góc và cạnh? Có lưu ý gì về số cạnh?
-
Bài tập 33 trang 93 SGK Toán 9 Tập 1
a) Trong hình 41, sinα bằng
(A) \({5 \over 3}\)
(B) \({5 \over 4}\)
(C) \({3 \over 5}\)
(D) \({3 \over 5}\)
b) Trong hình 42, sin Q bằng
(A) \({{P{\rm{R}}} \over {R{\rm{S}}}}\)
(B) \({{P{\rm{R}}} \over {QR}}\)
(C) \({{P{\rm{S}}} \over {S{\rm{R}}}}\)
(D) \({{S{\rm{R}}} \over {Q{\rm{R}}}}\)
c) Trong hình 43, cos 30° bằng
(A) \({{2{\rm{a}}} \over {\sqrt 3 }}\)
(B) \({a \over {\sqrt 3 }}\)
(C) \({{\sqrt 3 } \over 2}\)
(D) \(2\sqrt 3 {a^2}\)
-
Bài tập 34 trang 93 SGK Toán 9 Tập 1
Chọn kết quả đúng trong các kết quả dưới đây:
a) Trong hình 44, hệ thức nào trong các hệ thức sau là đúng?
(A) \(\sin \alpha = {b \over c}\)
(B) \({\mathop{\rm cotg}\nolimits} \alpha = {b \over c}\)
(C) \(tg\alpha = {a \over c}\)
(D) \({\mathop{\rm cotg}\nolimits} \alpha = {a \over c}\)
b) Trong hình 45, hệ thức nào trong các hệ thức sau không đúng?
(A) sin2α + cos2 α = 1;
(B) sin α = cos β;
(C) cos β = sin(90°- α);
(D) \(tg\alpha = {{\sin \alpha } \over {\cos \alpha }}\)
-
Bài tập 35 trang 94 SGK Toán 9 Tập 1
Tỉ số giữa hai cạnh góc vuông của một tam giác vuông bằng 19 : 28. Tìm các góc của nó.
-
Bài tập 36 trang 94 SGK Toán 9 Tập 1
Cho tam giác có một góc bằng 45°. Đường cao chia một cạnh kề với góc đó thành các phần 20cm và 21cm. Tính cạnh lớn trong hai cạnh còn lại (lưu ý có hai trường hợp hình 46 và hình 47)
-
Bài tập 37 trang 94 SGK Toán 9 Tập 1
Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5cm.
a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó.
b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nằm trên đường nào?
-
Bài tập 38 trang 95 SGK Toán 9 Tập 1
Hai chiếc thuyền A và B ở vị trí được minh họa như trong hình 48. Tính khoảng cách giữa chúng (làm tròn đến mét)
-
Bài tập 39 trang 95 SGK Toán 9 Tập 1
Tìm khoảng cách giữa hai cọc để căng dây vượt qua vực trong hình 49 (làm tròn đến mét)
-
Bài tập 40 trang 95 SGK Toán 9 Tập 1
Tính chiều cao của cây trong hình 50 (làm tròn đến đề - xi – mét)
-
Bài tập 41 trang 96 SGK Toán 9 Tập 1
Tam giác ABC vuông tại C có AC = 2cm, BC = 5cm, \(\widehat {BAC} = x,\widehat {ABC} = y\). Dùng các thông tin sau (nếu cần) để tìm x – y:
sin 23°36’ ≈ 0,4;
cos66°24’ ≈ 0,4;
tg21°48’ ≈ 0,4
-
Bài tập 42 trang 96 SGK Toán 9 Tập 1
Ở một cái thang dài \(3m\) người ta ghi: “ Để đảm bảo an toàn khi dùng thang phải đặt thang này tạo với mặt đất một góc có độ lớn từ \(60^0\) đến \(70^0\)”. Đo góc thì khó hơn đo độ dài. Vậy hãy cho biết: Khi dùng thang đó chân thang phải đặt cách tường bao nhiêu mét để đảm bảo an toàn.
-
Bài tập 43 trang 96 SGK Toán 9 Tập 1
Đố
Vào khoảng năm 200 trước Công nguyên, Ơ-ra-tô-xten, một nhà Toán học và thiên văn học Hi Lạp, đã ước lượng được “chu vi” của Trái Đất (chu vi đường Xích Đạo) nhờ hai quan sát sau:
1) Một ngày trong năm, ông ta để ý thấy Mặt Trời chiếu thẳng các đáy giếng ở thành phố Xy-en (Nay gọi là Át–xu-an), tức là tia sáng chiếu thẳng đứng.
2) Cùng lúc đó ở thành phố A-lếch-săng-đri-a cách Xy-en 800km, một tháp cao 25m có bóng trên mặt đất dài 3,1m.
Từ hai quan sát trên, em hãy tính xấp xỉ “chu vi” Trái Đất.
(Trên hình 5, điểm S tượng trưng cho thành phố Xy-en, điểm A tượng trung cho thành phố A-lếch-xăng-đri-a, bóng của tháp trên mặt đất được coi là đoạn thẳng AB).