OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Toán 11 Ôn tập chương 1 Hàm số lượng giác và Phương trình lượng giác


Nội dung bài ôn tập Chương Hàm số lượng giác và Phương trình lượng giác sẽ giúp các em có cái nhìn tổng quan về toàn bộ nội dung đã học trong chương 1 thông qua sơ đồ hệ thống hóa kiến thức và các bài tập ở mức độ khó cao hơn. Bên cạnh đó thông qua nội dung bài học, các em sẽ được tìm hiểu thêm một số dạng phương trình lượng giác đặc trưng không được giới thiệu trong sách giáo khoa Đại số và Giải tích 11.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 
 
 

Tóm tắt lý thuyết

1.1. Hệ thống hóa kiến thức chương Hàm số lượng giác và Phương trình lượng giác

1.2. Một số dạng phương trình lượng giác đặc trưng khác và phương pháp giải

a) Phương trình đẳng cấp bậc hai đối với sinx và cosx

- Dạng phương trình: \(a\sin {}^2x + b\sin x\cos x + c\cos {}^2x = d{\rm{  (1) }}\) (a, b, c, d: có ít nhất 2 hệ số khác không) 

- Phương pháp giải:

+ Xét \(\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\) có là nghiệm của (1) hay không

+ Xét \(\cos x \ne 0\), chia hai vế của (1) cho \({\cos ^2}x\) ta được: \(a{\tan ^2}x + b\tan x + c = d(1 + {\tan ^2}x)\) \( \Leftrightarrow \left( {a - d} \right){\tan ^2}x + b\tan x + c - d = 0\)  \(\left( {1'} \right)\)

+ Đặt \(t = \tan x\)

+ Phương trình \(\left( {1'} \right)\) trở thành: \((a - d){t^2} + bt + c - d = 0{\rm{   (2)}}\)

+ Giải phương trình (2) theo t từ đó suy ra x  theo \(t = \tan x\)

b) Phương trình đẳng cấp bậc ba đối với sinx và cosx

- Dạng phương trình: \(a\sin {}^3x + b{\sin ^2}x\cos x + c\sin x{\cos ^2}x + d\sin x + e\cos x + fc{\rm{o}}{{\rm{s}}^3}x = 0{\rm{    (1)  }}\)

(a, b, c, d, e, f: có ít nhất 2 hệ số khác không).

- Phương pháp giải:

+ Xét \(\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)có là nghiệm của (1) hay không

+ Xét\(\cos x \ne 0\), chia hai vế của (1) cho \({\cos ^3}x\)  ta được: \(a{\tan ^3}x + b{\tan ^2}x + c\tan x + d\tan x(1 + {\tan ^2}x) + e(1 + {\tan ^2}x) + f = 0\)

\( \Leftrightarrow (a + d){\tan ^3}x + (b + e){\tan ^2}x + (c + d)\tan x + e + f = 0\) \(\left( {{\rm{1'}}} \right)\)

+ Đặt \(t = \tan x\)

+ Phương trình \(\left( {{\rm{1'}}} \right)\) trở thành:

\((a + d){{\mathop{\rm t}\nolimits} ^3} + (b + e){{\mathop{\rm t}\nolimits} ^2} + (c + d){\mathop{\rm t}\nolimits}  + e + f = 0\)   (2)

+ Giải phương trình (2) theo t từ đó suy ra x theo \(t = \tan x\)

c) Phương trình đối xứng đối với sinx và cosx

Dạng 1: \(a\left( {\sin x + \cos x} \right) + b\sin x\cos x + c = 0\)

Phương pháp giải

+ Đặt \(t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\)

+ Điều kiện: \(\left| t \right| \le \sqrt 2 \)    (*)

+ Suy ra  \(\sin x\cos x = \frac{{{t^2} - 1}}{2}\)

+ Khi đó phương trình trở thành: \(b{t^2} + 2at + 2c - b = 0\)

+ Giải phương trình theo t kết hợp với điều kiên (*) suy ra t

+ Giải phương trình lượng giác cơ bản \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = t\), suy ra x

- Chú ý: Ta cũng có thể đặt \(t = \sin x + \cos x = \sqrt 2 c{\rm{os}}\left( {x - \frac{\pi }{4}} \right)\) và làm tương tự như trên.

Dạng 2: \(a\left( {\sin x - \cos x} \right) + b\sin x\cos x + c = 0\)

- Phương pháp giải

+ Đặt \(t = \sin x - \cos x = \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\)

+ Điều kiện: \(\left| t \right| \le \sqrt 2 \)    (*)

+ Suy ra \(\sin x\cos x = \frac{{1 - {t^2}}}{2}\)

+ Khi đó phương trình trở thành: \(b{t^2} - 2at - 2c - b = 0\)

+ Giải phương trình theo t kết hợp với điều kiện  (*) suy ra t

+ Giải phương trình lượng giác cơ bản \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = t\), suy ra x

d) Phương trình đối xứng đối với tanx và cotx

Dạng 1: \(a({\tan ^2}x + {\cot ^2}x) + b(\tan x + \cot x) + c = 0\)

- Phương pháp giải

+ Điều kiện \(\left\{ {\begin{array}{*{20}{c}}{\sin x \ne 0}\\{\cos x \ne 0}\end{array}} \right. \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow x \ne \frac{{k\pi }}{2},k \in \mathbb{Z}\)

+ Đặt \(t = \tan x + \cot x\), điều kiện \(\left| t \right| \ge 2\)

+ Suy ra \({\tan ^2}x + {\cot ^2}x = {t^2} - 2\)

+ Phương trình trở thành: \(a({t^2} - 2) + bt + c = 0 \Leftrightarrow a{t^2} + bt + c - 2a = 0\)

+ Giải phương trình theo t và kết hợp với điều kiện (*), suy ra t

+ Giải phương trình \(\tan x + \cot x = t\)

Dạng 2: \(a({\tan ^2}x + {\cot ^2}x) + b(\tan x - \cot x) + c = 0\)

+ Điều kiện \(\left\{ {\begin{array}{*{20}{c}}{\sin x \ne 0}\\{\cos x \ne 0}\end{array}} \right. \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow x \ne \frac{{k\pi }}{2}{\rm{, }}k \in \mathbb{Z}\)

+ Đặt  \(t = \tan x - \cot x\). Khi đó \({\tan ^2}x + {\cot ^2}x = {t^2} + 2\)

+ Phương trình trở thành: \(a({t^2} + 2) + bt + c = 0 \Leftrightarrow a{t^2} + bt + c + 2a = 0\)

+ Giải phương trình theo t và kết hợp với điều kiện (nếu có), suy ra t

+ Giải phương trình \(\tan x - \cot x = t\) 

VIDEO
YOMEDIA
Trắc nghiệm hay với App HOC247
YOMEDIA

Bài tập minh họa

Giải các phương trình lượng giác sau:

a) \(\tan x + \frac{{\cos x}}{{1 + \sin x}} = 1\)

b) \(\cot x = \tan x + \frac{{2\cos 4x}}{{\sin 2x}}\)

c) \({\sin ^4}x + {\cos ^4}x = 2\sin x\cos x - \frac{1}{2}{\cos ^2}2x\)

d) \(\cos 7x\cos 5x - \sqrt 3 \sin 2x = 1 - \sin 7x\sin 5x\)

e) \({\sin ^4}x + {\cos ^4}\left( {x + \frac{\pi }{4}} \right) = \frac{1}{4}\)

Hướng dẫn giải:

a) \(\tan x + \frac{{\cos x}}{{1 + \sin x}} = 1\)

Điều kiện: \(\left\{ \begin{array}{l}\cos x \ne 0\\\sin x \ne  - 1\end{array} \right. \Leftrightarrow x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

Khi đó (1)\( \Leftrightarrow \frac{{\sin x}}{{\cos x}} + \frac{{\cos x}}{{1 + \sin x}} = 1\)

\(\begin{array}{l} \Leftrightarrow \sin x\left( {1 + \sin x} \right) + {\cos ^2}x = \cos x\left( {1 + \sin x} \right)\\ \Leftrightarrow \sin x + 1 = \cos x\left( {1 + \sin x} \right)\end{array}\)

\( \Leftrightarrow \left( {\sin x + 1} \right)\left( {\cos x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sin x =  - 1\\\cos x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{2} + k\pi \\x = k2\pi \end{array} \right.,k \in \mathbb{Z}\)

So sánh với điều kiện (*) ta được nghiệm của (1) là \(x = k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

 

b) \(\cot x = \tan x + \frac{{2\cos 4x}}{{\sin 2x}}\)

Điều kiện: \(\sin 2x \ne 0 \Leftrightarrow \cos 2x \ne  \pm 1\) (*)

Khi đó (2)\( \Leftrightarrow \frac{{\cos x}}{{\sin x}} - \frac{{\sin x}}{{\cos x}} = \frac{{\cos 4x}}{{\sin x\cos x}}\)\( \Leftrightarrow {\cos ^2}x - {\sin ^2}x = \cos 4x\)

\( \Leftrightarrow \cos 2x = \cos 4x \Leftrightarrow 2{\cos ^2}2x - \cos 2x - 1 = 0\)

Đặt: \(t = \cos 2x,t \in \left( { - 1;1} \right)\)

Bất phương trình trở thành: \(2{t^2} - t - 1 = 0 \Leftrightarrow  \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 1\,(loai){\rm{   }}}\\{t =  - \frac{1}{2}}\end{array}} \right.\)

Với \(\cos 2x =  - \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \frac{{2\pi }}{3} + k2\pi }\\{2x =  - \frac{{2\pi }}{3} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k\pi }\\{x =  - \frac{\pi }{3} + k\pi }\end{array}} \right.,k \in \mathbb{Z}\)

Vậy nghiệm của (2) là \(x = \frac{\pi }{3} + k\pi \), \(x =  - \frac{\pi }{3} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

 

c) \({\sin ^4}x + {\cos ^4}x = 2\sin x\cos x - \frac{1}{2}{\cos ^2}2x\)

\( \Leftrightarrow 1 - 2{\sin ^2}x{\cos ^2}x = \sin 2x - \frac{1}{2}\left( {1 - {{\sin }^2}2x} \right)\)

\( \Leftrightarrow 1 - \frac{{{{\sin }^2}2x}}{2} = \sin 2x - \frac{1}{2}\left( {1 - {{\sin }^2}2x} \right)\)

\( \Leftrightarrow {\sin ^2}2x + 2\sin 2x - 3 = 0\)

Đặt \(t = \sin 2x,t \in \left[ { - 1;1} \right],\) Bất phương trình trở thành:

\({t^2} - 2t - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 3\,(loai)\end{array} \right.\)

Với \(\sin 2x = 1 \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)

Vậy nghiệm của (3) là \(x = \frac{\pi }{4} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\).

 

d) \(\cos 7x\cos 5x - \sqrt 3 \sin 2x = 1 - \sin 7x\sin 5x\)

\( \Leftrightarrow \left( {\cos 7x\cos 5x + \sin 7x\sin 5x} \right) - \sqrt 3 \sin 2x = 1\)

\(\begin{array}{l} \Leftrightarrow \cos 2x - \sqrt 3 \sin 2x = 1 \Leftrightarrow \cos \left( {2x + \frac{\pi }{3}} \right) = \frac{1}{2}\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x + \frac{\pi }{3} = \frac{\pi }{3} + k2\pi }\\{2x + \frac{\pi }{3} =  - \frac{\pi }{3} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi {\rm{         }}}\\{x =  - \frac{\pi }{3} + k\pi }\end{array},} \right.{\rm{ }}k \in \mathbb{Z}\end{array}\)

Vậy nghiệm của (4) là \(x = k\pi \), \(x =  - \frac{\pi }{3} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

 

e) \({\sin ^4}x + {\cos ^4}\left( {x + \frac{\pi }{4}} \right) = \frac{1}{4}\)

\( \Leftrightarrow \frac{{{{(1 - \cos 2x)}^2}}}{4} + \frac{{{{\left[ {1 + \cos (2x + \frac{\pi }{2})} \right]}^2}}}{4} = \frac{1}{4}\)\( \Leftrightarrow {(1 - \cos 2x)^2} + {(1 - \sin 2x)^2} = 1\)

\( \Leftrightarrow \cos 2x + \sin 2x = 1 \Leftrightarrow \cos \left( {2x - \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2} \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\2x - \frac{\pi }{4} =  - \frac{\pi }{4} + k2\pi \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = k\pi \end{array} \right.{\rm{, }}k \in \mathbb{Z}\)

Vậy nghiệm của (5) là \(x = k\pi \), \(x = \frac{\pi }{4} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\).

ADMICRO

Nội dung bài ôn tập Chương Hàm số lượng giác và Phương trình lượng giác sẽ giúp các em có cái nhìn tổng quan về toàn bộ nội dung đã học trong chương 1 thông qua sơ đồ hệ thống hóa kiến thức và các bài tập ở mức độ khó cao hơn. Bên cạnh đó thông qua nội dung bài học, các em sẽ được tìm hiểu thêm một số dạng phương trình lượng giác đặc trưng không được giới thiệu trong sách giáo khoa Đại số và Giải tích 11.

3. Luyện tập Chương 1 Giải tích 11

Nội dung bài giảng đã giúp các em có các nhìn tổng quát về nội dung của chương 1 Giải tích lớp 12 và ôn tập phương pháp giải một số dạng bài tập trọng tâm.

3.1 Trắc nghiệm ôn tập chương 1

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Ôn tập chương I Ứng dụng hàm số lượng giác để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2 Bài tập SGK và Nâng Cao về phương trình lượng giác và ứng dụng

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Ôn tập chương I sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.

Bài tập 1 trang 40 SGK Đại số & Giải tích 11

Bài tập 2 trang 40 SGK Đại số & Giải tích 11

Bài tập 3 trang 41 SGK Đại số & Giải tích 11

Bài tập 4 trang 41 SGK Đại số & Giải tích 11

Bài tập 5 trang 41 SGK Đại số & Giải tích 11

Bài tập 6 trang 41 SGK Đại số & Giải tích 11

Bài tập 7 trang 41 SGK Đại số & Giải tích 11

Bài tập 8 trang 41 SGK Đại số & Giải tích 11

Bài tập 9 trang 41 SGK Đại số & Giải tích 11

Bài tập 10 trang 41 SGK Đại số & Giải tích 11

Bài tập 1.39 trang 40 SBT Toán 11

Bài tập 1.40 trang 40 SBT Toán 11

Bài tập 1.41 trang 40 SBT Toán 11

Bài tập 1.42 trang 40 SBT Toán 11

Bài tập 1.43 trang 40 SBT Toán 11

Bài tập 1.44 trang 40 SBT Toán 11

Bài tập 1.45 trang 40 SBT Toán 11

Bài tập 1.46 trang 40 SBT Toán 11

Bài tập 1.47 trang 40 SBT Toán 11

Bài tập 1.48 trang 40 SBT Toán 11

Bài tập 1.49 trang 40 SBT Toán 11

Bài tập 1.50 trang 40 SBT Toán 11

Bài tập 1.51 trang 40 SBT Toán 11

Bài tập1.52 trang 40 SBT Toán 11

Bài tập 1.53 trang 40 SBT Toán 11

Bài tập 1.54 trang 41 SBT Toán 11

Bài tập 1.55 trang 41 SBT Toán 11

Bài tập 1.56 trang 41 SBT Toán 11

Bài tập 1.57 trang 41 SBT Toán 11

Bài tập 1.58 trang 41 SBT Toán 11

Bài tập 43 trang 47 SGK Toán 11 NC

Bài tập 44 trang 47 SGK Toán 11 NC

Bài tập 45 trang 47 SGK Toán 11 NC

Bài tập 46 trang 48 SGK Toán 11 NC

Bài tập 47 trang 48 SGK Toán 11 NC

Bài tập 48 trang 48 SGK Toán 11 NC

Bài tập 49 trang 48 SGK Toán 11 NC

Bài tập 50 trang 48 SGK Toán 11 NC

Bài tập 51 trang 48 SGK Toán 11 NC

Bài tập 52 trang 48 SGK Toán 11 NC

Bài tập 53 trang 49 SGK Toán 11 NC

Bài tập 54 trang 49 SGK Toán 11 NC

Bài tập 55 trang 49 SBT Toán 11 NC

Bài tập 56 trang 49 SGK Toán 11 NC

Bài tập 57 trang 49 SGK Toán 11 NC

Bài tập 58 trang 49 SGK Toán 11 NC

Bài tập 59 trang 49 SGK Toán 11 NC

Bài tập 60 trang 49 SGK Toán 11 NC

Bài tập 61 trang 49 SGK Toán 11 NC

Bài tập 62 trang 49 SGK Toán 11 NC

Bài tập 63 trang 49 SGK Toán 11 NC

4. Hỏi đáp chương 1 giải tích 11

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

-- Mod Toán Học 11 HỌC247

NONE
OFF