OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 1.46 trang 40 SBT Toán 11

Giải bài 1.46 tr 40 SBT Toán 11

Giải phương trình sau

\({\sin ^2}x + {\sin ^2}2x = {\sin ^2}3x\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Ta có: \({\sin ^2}x + {\sin ^2}2x = {\sin ^2}3x\)

\(\begin{array}{l}
 \Leftrightarrow \frac{{1 - \cos 2x}}{2} + \frac{{1 - \cos 4x}}{2} = \frac{{1 - \cos 6x}}{2}\\
 \Leftrightarrow 1 - \cos 4x + \cos 6x - \cos 2x = 0\\
 \Leftrightarrow 2{\sin ^2}2x - 2\sin 4x\sin 2x = 0\\
 \Leftrightarrow 2\sin 2x(\sin 2x - \sin 4x) = 0\\
 \Leftrightarrow 2\sin 2x( - 2)\cos 3x\sin x = 0\\
 \Leftrightarrow \sin 2x\cos 3x\sin x = 0\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\sin 2x = 0}\\
{\cos 3x = 0}\\
{\sin x = 0}
\end{array}} \right.\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\sin 2x = 0}\\
{\cos 3x = 0}
\end{array}} \right.\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{2x = k\pi ,k \in Z}\\
{3x = \frac{\pi }{2} + k\pi ,k \in Z}
\end{array}} \right.\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = k\frac{\pi }{2},k \in Z}\\
{x = \frac{\pi }{6} + k\frac{\pi }{3},k \in Z}
\end{array}} \right.
\end{array}\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1.46 trang 40 SBT Toán 11 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Vũ Hải Yến
    Theo dõi (0) 1 Trả lời
  • Hương Lan

    A. \(y = \sin x\)                     

    B. \(y = \cot x\)    

    C. \(y = \tan x\)                    

    D. \(y = \cos x\)       

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Nguyen Dat

    A. \(x = \dfrac{\pi }{4} + k2\pi \).                               

    B. \(x = \dfrac{\pi }{4} + k\pi \).                                 

    C. \(x = \dfrac{\pi }{4}\).    

    D. \(x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\).

    Theo dõi (0) 1 Trả lời
  • Phí Phương

    A. \(M = 2\)   

    B. \(M = 2\sqrt 2 \)    

    C. \(M = 1\)               

    D. \(M = \sqrt 2 \)

    Theo dõi (0) 1 Trả lời
  • ADMICRO
    Anh Linh

    A. \(\cos 2x = \dfrac{{\sqrt 3 }}{2}.\)                          

    B. \(\cot x = \sqrt 3 .\)    

    C. \(\tan x = \sqrt 3 .\)     

    D. \(\sin \left( {x - \dfrac{\pi }{3}} \right) =  - \dfrac{1}{2}\)

    Theo dõi (0) 1 Trả lời
  • thuy tien

    A. \(x = \dfrac{\pi }{4} + k\pi \); \(x = \arctan ( - \dfrac{3}{2}) + k\pi ,k \in \mathbb{Z}\)

    B. \(x = \dfrac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)

    C. \(x = \dfrac{\pi }{4} + k\pi \);\(x = \arctan ( - 3) + k\pi ,k \in \mathbb{Z}\)

    D. \(x = \arctan ( - \dfrac{3}{2}) + k\pi ,k \in \mathbb{Z}\)

    Theo dõi (0) 1 Trả lời
  • Phạm Phú Lộc Nữ

    A. \(y = \sin x - \cos x\).

    B. \(y = 2\sin x\).

    C. \(y = 2\sin \left( { - x} \right)\).

    D. \(y =  - 2\cos x\)

    Theo dõi (0) 1 Trả lời
  • Thúy Vân

    A. -9                                     

    B. 0

    C. 9                                      

    D. -8

    Theo dõi (0) 1 Trả lời
  • khanh nguyen

    A. \(\mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\)        

    B. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)                 

    C. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\)               

    D. \(\phi \)

    Theo dõi (0) 1 Trả lời
NONE
OFF