Giải bài 2 tr 27 sách GK Toán Hình lớp 10
Cho hai vectơ a và b đều khác vectơ 0. Các khẳng định sau đúng hay sai?
a, Hai vecto cùng hướng thì cùng phương.
b, Hai vecto \(\overrightarrow b \) và k\(\overrightarrow b \) cùng phương.
c, Hai vecto \(\overrightarrow a \) và (-2)\(\overrightarrow a \) cùng hướng.
d) Hai vector ngược hướng với vector thứ ba khác vectơ \(\overrightarrow 0 \) thì cùng phương.
Hướng dẫn giải chi tiết bài 2
a) Đúng
b) Đúng
c) Sai
d) Đúng
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Bài tập 1 trang 27 SGK Hình học 10
Bài tập 3 trang 27 SGK Hình học 10
Bài tập 4 trang 27 SGK Hình học 10
Bài tập 5 trang 27 SGK Hình học 10
Bài tập 6 trang 27 SGK Hình học 10
Bài tập 7 trang 28 SGK Hình học 10
Bài tập 8 trang 28 SGK Hình học 10
Bài tập 9 trang 28 SGK Hình học 10
Bài tập 10 trang 28 SGK Hình học 10
Bài tập 11 trang 28 SGK Hình học 10
Bài tập 12 trang 28 SGK Hình học 10
Bài tập 13 trang 28 SGK Hình học 10
Bài tập 1.48 trang 43 SBT Hình học 10
Bài tập 1.49 trang 43 SBT Hình học 10
Bài tập 1.50 trang 43 SBT Hình học 10
Bài tập 1.51 trang 43 SBT Hình học 10
Bài tập 1.52 trang 43 SBT Hình học 10
Bài tập 1.53 trang 43 SBT Hình học 10
Bài tập 1.54 trang 43 SBT Hình học 10
Bài tập 1.55 trang 43 SBT Hình học 10
Bài tập 1.56 trang 43 SBT Hình học 10
Bài tập 1.57 trang 44 SBT Hình học 10
Bài tập 1.58 trang 44 SBT Hình học 10
Bài tập 1.59 trang 44 SBT Hình học 10
Bài tập 1.60 trang 44 SBT Hình học 10
Bài tập 1.61 trang 44 SBT Hình học 10
Bài tập 1.62 trang 44 SBT Hình học 10
Bài tập 1.63 trang 44 SBT Hình học 10
Bài tập 1.64 trang 45 SBT Hình học 10
Bài tập 1.65 trang 45 SBT Hình học 10
Bài tập 1.66 trang 45 SBT Hình học 10
Bài tập 1.67 trang 45 SBT Hình học 10
Bài tập 1.68 trang 45 SBT Hình học 10
Bài tập 1.69 trang 45 SBT Hình học 10
Bài tập 1.70 trang 45 SBT Hình học 10
Bài tập 1.71 trang 46 SBT Hình học 10
Bài tập 1.72 trang 46 SBT Hình học 10
Bài tập 1.73 trang 46 SBT Hình học 10
Bài tập 1.74 trang 46 SBT Hình học 10
Bài tập 1.75 trang 46 SBT Hình học 10
Bài tập 1.76 trang 46 SBT Hình học 10
Bài tập 1.77 trang 46 SBT Hình học 10
Bài tập 1.78 trang 46 SBT Hình học 10
Bài tập 1.79 trang 47 SBT Hình học 10
Bài tập 1.80 trang 47 SBT Hình học 10
Bài tập 1.81 trang 47 SBT Hình học 10
Bài tập 1.82 trang 47 SBT Hình học 10
Bài tập 1.83 trang 47 SBT Hình học 10
Bài tập 1.84 trang 48 SBT Hình học 10
Bài tập 1.85 trang 47 SBT Hình học 10
Bài tập 1.86 trang 48 SBT Hình học 10
Bài tập 1.87 trang 48 SBT Hình học 10
Bài tập 1.88 trang 48 SBT Hình học 10
Bài tập 1.89 trang 49 SBT Hình học 10
Bài tập 1.90 trang 49 SBT Hình học 10
Bài tập 1.91 trang 49 SBT Hình học 10
Bài tập 1.92 trang 49 SBT Hình học 10
Bài tập 1.93 trang 49 SBT Hình học 10
Bài tập 1.95 trang 49 SBT Hình học 10
Bài tập 1.96 trang 49 SBT Hình học 10
Bài tập 1.97 trang 50 SBT Hình học 10
Bài tập 1.98 trang 50 SBT Hình học 10
Bài tập 1.99 trang 50 SBT Hình học 10
Bài tập 1.100 trang 50 SBT Hình học 10
Bài tập 1 trang 34 SGK Hình học 10 NC
Bài tập 2 trang 34 SGK Hình học 10 NC
Bài tập 3 trang 34 SGK Hình học 10 NC
Bài tập 4 trang 34 SGK Hình học 12 NC
Bài tập 5 trang 35 SGK Hình học 12 NC
Bài tập 6 trang 35 SGK Hình học 12 NC
Bài tập 7 trang 36 SGK Hình học 10 NC
Bài tập 8 trang 36 SGK Hình học10 NC
Bài tập 9 trang 36 SGK Hình học 10 NC
Bài tập 10 trang 36 SGK Hình học 10 NC
Bài tập 11 trang 36 SGK Hình học 10 NC
Bài tập 12 trang 37 SGK Hình học 10 NC
Bài tập 13 trang 37 SGK Hình học 10 NC
Bài tập 14 trang 37 SGK Hình học 10 NC
Bài tập 15 trang 37 SGK Hình học 10 NC
Bài tập 16 trang 37 SGK Hình học 10 NC
Bài tập 17 trang 37 SGK Hình học 10 NC
Bài tập 18 trang 37 SGK Hình học 10 NC
Bài tập 19 trang 38 SGK Hình học 10 NC
Bài tập 20 trang 38 SGK Hình học 10 NC
Bài tập 21 trang 38 SGK Hình học 10 NC
-
Cho tam giác \(ABC\) với trọng tâm \(G\). Đặt \(\overrightarrow {CA} = \overrightarrow a ,\,\,\overrightarrow {CB} = \overrightarrow b \). Biểu thị vec tơ \(\overrightarrow {AG} \) theo hai vec tơ \(\overrightarrow a \) và \(\overrightarrow b \) như sau:
bởi Bánh Mì 22/02/2021
A. \(\overrightarrow {AG} = \dfrac{{2\overrightarrow a - \overrightarrow b }}{3};\)
B. \(\overrightarrow {AG} = \dfrac{{2\overrightarrow a + \overrightarrow b }}{3};\)
C. \(\overrightarrow {AG} = \dfrac{{\overrightarrow a - 2\overrightarrow b }}{3};\)
D. \(\overrightarrow {AG} = \dfrac{{ - 2\overrightarrow a + \overrightarrow b }}{3}.\)
Theo dõi (0) 1 Trả lời -
Cho sáu điểm \(A, B, C, D, E, F.\) Trong các đẳng thức dưới đây, đẳng thức nào sai?
bởi Thùy Trang 22/02/2021
A. \(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BD} + \overrightarrow {CF} ;\)
B. \(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CE} ;\)
C. \(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} ;\)
D. \(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AF} + \overrightarrow {BE} + \overrightarrow {CD} .\)
Theo dõi (0) 1 Trả lời -
Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A(4;0), B(2;-2)\). Đường thẳng \(AB\) cắt trục \(Oy\) tại điểm \(M\). Trong ba điểm \(A, B, M\) điểm nào nằm giữa hai điểm còn lại.
bởi ngọc trang 22/02/2021
Theo dõi (0) 1 Trả lời -
Cho tam giác \(ABC\), với mỗi số \(k\) ta xác định các điểm \(A’, B’\), sao cho \(\overrightarrow {AA'} = k\overrightarrow {BC} \,;\,\,\overrightarrow {BB'} = k\overrightarrow {CA} \). Tìm quỹ tích trọng tâm \(G’\) của tam giác \(A’B’C\).
bởi My Le 21/02/2021
Theo dõi (0) 1 Trả lời