Giải bài 1.50 tr 43 SBT Hình học 10
Cho hai hình bình hành ABCD và ABEF với A, D, F không thẳng hàng. Dựng các vec tơ \(\overrightarrow {EH} \) và \(\overrightarrow {FG} \) bằng vec tơ \(\overrightarrow {AD} \). Chứng minh tứ giác CDGH là hình bình hành.
Hướng dẫn giải chi tiết
Ta có: \(\overrightarrow {EH} = \overrightarrow {AD} ,\overrightarrow {FG} = \overrightarrow {AD} \Rightarrow \overrightarrow {EH} = \overrightarrow {FG} \)
⇒ Tứ giác FEHG là hình bình hành
\( \Rightarrow \overrightarrow {GH} = \overrightarrow {FE} \) (1)
Ta có: \(\overrightarrow {DC} = \overrightarrow {AB} ,\overrightarrow {AB} = \overrightarrow {FE} \) (2)
Từ (1) và (2) ta có \(\overrightarrow {GH} = \overrightarrow {DC} \)
Vậy tứ giác GHCD là hình bình hành.
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Bài tập 1.48 trang 43 SBT Hình học 10
Bài tập 1.49 trang 43 SBT Hình học 10
Bài tập 1.51 trang 43 SBT Hình học 10
Bài tập 1.52 trang 43 SBT Hình học 10
Bài tập 1.53 trang 43 SBT Hình học 10
Bài tập 1.54 trang 43 SBT Hình học 10
Bài tập 1.55 trang 43 SBT Hình học 10
Bài tập 1.56 trang 43 SBT Hình học 10
Bài tập 1.57 trang 44 SBT Hình học 10
Bài tập 1.58 trang 44 SBT Hình học 10
Bài tập 1.59 trang 44 SBT Hình học 10
Bài tập 1.60 trang 44 SBT Hình học 10
Bài tập 1.61 trang 44 SBT Hình học 10
Bài tập 1.62 trang 44 SBT Hình học 10
Bài tập 1.63 trang 44 SBT Hình học 10
Bài tập 1.64 trang 45 SBT Hình học 10
Bài tập 1.65 trang 45 SBT Hình học 10
Bài tập 1.66 trang 45 SBT Hình học 10
Bài tập 1.67 trang 45 SBT Hình học 10
Bài tập 1.68 trang 45 SBT Hình học 10
Bài tập 1.69 trang 45 SBT Hình học 10
Bài tập 1.70 trang 45 SBT Hình học 10
Bài tập 1.71 trang 46 SBT Hình học 10
Bài tập 1.72 trang 46 SBT Hình học 10
Bài tập 1.73 trang 46 SBT Hình học 10
Bài tập 1.74 trang 46 SBT Hình học 10
Bài tập 1.75 trang 46 SBT Hình học 10
Bài tập 1.76 trang 46 SBT Hình học 10
Bài tập 1.77 trang 46 SBT Hình học 10
Bài tập 1.78 trang 46 SBT Hình học 10
Bài tập 1.79 trang 47 SBT Hình học 10
Bài tập 1.80 trang 47 SBT Hình học 10
Bài tập 1.81 trang 47 SBT Hình học 10
Bài tập 1.82 trang 47 SBT Hình học 10
Bài tập 1.83 trang 47 SBT Hình học 10
Bài tập 1.84 trang 48 SBT Hình học 10
Bài tập 1.85 trang 47 SBT Hình học 10
Bài tập 1.86 trang 48 SBT Hình học 10
Bài tập 1.87 trang 48 SBT Hình học 10
Bài tập 1.88 trang 48 SBT Hình học 10
Bài tập 1.89 trang 49 SBT Hình học 10
Bài tập 1.90 trang 49 SBT Hình học 10
Bài tập 1.91 trang 49 SBT Hình học 10
Bài tập 1.92 trang 49 SBT Hình học 10
Bài tập 1.93 trang 49 SBT Hình học 10
Bài tập 1.95 trang 49 SBT Hình học 10
Bài tập 1.96 trang 49 SBT Hình học 10
Bài tập 1.97 trang 50 SBT Hình học 10
Bài tập 1.98 trang 50 SBT Hình học 10
Bài tập 1.99 trang 50 SBT Hình học 10
Bài tập 1.100 trang 50 SBT Hình học 10
Bài tập 1 trang 34 SGK Hình học 10 NC
Bài tập 2 trang 34 SGK Hình học 10 NC
Bài tập 3 trang 34 SGK Hình học 10 NC
Bài tập 4 trang 34 SGK Hình học 12 NC
Bài tập 5 trang 35 SGK Hình học 12 NC
Bài tập 6 trang 35 SGK Hình học 12 NC
Bài tập 7 trang 36 SGK Hình học 10 NC
Bài tập 8 trang 36 SGK Hình học10 NC
Bài tập 9 trang 36 SGK Hình học 10 NC
Bài tập 10 trang 36 SGK Hình học 10 NC
Bài tập 11 trang 36 SGK Hình học 10 NC
Bài tập 12 trang 37 SGK Hình học 10 NC
Bài tập 13 trang 37 SGK Hình học 10 NC
Bài tập 14 trang 37 SGK Hình học 10 NC
Bài tập 15 trang 37 SGK Hình học 10 NC
Bài tập 16 trang 37 SGK Hình học 10 NC
Bài tập 17 trang 37 SGK Hình học 10 NC
Bài tập 18 trang 37 SGK Hình học 10 NC
Bài tập 19 trang 38 SGK Hình học 10 NC
Bài tập 20 trang 38 SGK Hình học 10 NC
Bài tập 21 trang 38 SGK Hình học 10 NC
-
Xác định vị trí 3 điểm A, B, C thỏa hệ thức: \(\overrightarrow {AB} = \overrightarrow {CA} \) là:
bởi Tường Vi 19/02/2021
A. A là trung điểm của BC
B. \(\Delta \)ABC cân
C. A, B, C thẳng hàng
D. C trùng B
Theo dõi (0) 1 Trả lời -
Cho ∆ ABC vuông cân tại A, H là trung điểm BC, đẳng thức nào sau đây là đúng ?
bởi bala bala 20/02/2021
A. \(\;\overrightarrow {AB} = \overrightarrow {AC} \;\)
B. \(\overrightarrow {BC} = 2\overrightarrow {CH} \)
C. \(\;\overrightarrow {BC} = 2\overrightarrow {AH} \)
D. \(\overrightarrow {BH} = \overrightarrow {HC} \)
Theo dõi (0) 1 Trả lời -
A. \(\overrightarrow {HB} = \overrightarrow {HC} \)
B. \(\overrightarrow {AB} = \overrightarrow {AC} \)
C. \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {AC} } \right|\)
D. Tất cả các đáp án trên đều sai
Theo dõi (0) 1 Trả lời -
Cho 4 điểm A, B, C, D bất kỳ, chọn đẳng thức đúng:
bởi Ánh tuyết 19/02/2021
A. \(\overrightarrow {BA} - \overrightarrow {CA} - \overrightarrow {DC} = \overrightarrow {BD} \)
B. \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {BD} \)
C. \(\overrightarrow {CB} + \overrightarrow {BA} + \overrightarrow {AD} = \overrightarrow {DC} \)
D. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \)
Theo dõi (0) 1 Trả lời