Giải bài 1.48 tr 43 SBT Hình học 10
Cho hình bình hành ABCD tâm O. Gọi M và N lần lượt là trung điểm của AD và BC. Dựa vào các điểm A, B, C, D, O, M, N đã cho, hãy:
a) Kể tên hai vec tơ cùng phương với \(\overrightarrow {AB} \), hai vec tơ cùng hướng với \(\overrightarrow {AB} \), hai vec tơ ngược hướng với \(\overrightarrow {AB} \) (các vec tơ kể ra này đều khác \(\overrightarrow 0 \))
b) Chỉ ra một vec tơ bằng vec tơ \(\overrightarrow {MO} \), một vec tơ bằng véc tơ \(\overrightarrow {OB} \)
Hướng dẫn giải chi tiết
a) Hai vec tơ cùng phương với \(\overrightarrow {AB} \) là \(\overrightarrow {MO}, \overrightarrow {CD} \)
Hai vec tơ cùng hướng với \(\overrightarrow {AB} \) là \(\overrightarrow {ON}, \overrightarrow {DC}\);
Hai vec tơ ngược hướng với \(\overrightarrow {AB} \) là \(\overrightarrow {OM}, \overrightarrow {NO} \);
b) Vec tơ bằng véc tơ \(\overrightarrow {MO} \) là \(\overrightarrow {ON} \);
Vec tơ bằng véc tơ \(\overrightarrow {OB} \) là \(\overrightarrow {DO} \).
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Bài tập 12 trang 28 SGK Hình học 10
Bài tập 13 trang 28 SGK Hình học 10
Bài tập 1.49 trang 43 SBT Hình học 10
Bài tập 1.50 trang 43 SBT Hình học 10
Bài tập 1.51 trang 43 SBT Hình học 10
Bài tập 1.52 trang 43 SBT Hình học 10
Bài tập 1.53 trang 43 SBT Hình học 10
Bài tập 1.54 trang 43 SBT Hình học 10
Bài tập 1.55 trang 43 SBT Hình học 10
Bài tập 1.56 trang 43 SBT Hình học 10
Bài tập 1.57 trang 44 SBT Hình học 10
Bài tập 1.58 trang 44 SBT Hình học 10
Bài tập 1.59 trang 44 SBT Hình học 10
Bài tập 1.60 trang 44 SBT Hình học 10
Bài tập 1.61 trang 44 SBT Hình học 10
Bài tập 1.62 trang 44 SBT Hình học 10
Bài tập 1.63 trang 44 SBT Hình học 10
Bài tập 1.64 trang 45 SBT Hình học 10
Bài tập 1.65 trang 45 SBT Hình học 10
Bài tập 1.66 trang 45 SBT Hình học 10
Bài tập 1.67 trang 45 SBT Hình học 10
Bài tập 1.68 trang 45 SBT Hình học 10
Bài tập 1.69 trang 45 SBT Hình học 10
Bài tập 1.70 trang 45 SBT Hình học 10
Bài tập 1.71 trang 46 SBT Hình học 10
Bài tập 1.72 trang 46 SBT Hình học 10
Bài tập 1.73 trang 46 SBT Hình học 10
Bài tập 1.74 trang 46 SBT Hình học 10
Bài tập 1.75 trang 46 SBT Hình học 10
Bài tập 1.76 trang 46 SBT Hình học 10
Bài tập 1.77 trang 46 SBT Hình học 10
Bài tập 1.78 trang 46 SBT Hình học 10
Bài tập 1.79 trang 47 SBT Hình học 10
Bài tập 1.80 trang 47 SBT Hình học 10
Bài tập 1.81 trang 47 SBT Hình học 10
Bài tập 1.82 trang 47 SBT Hình học 10
Bài tập 1.83 trang 47 SBT Hình học 10
Bài tập 1.84 trang 48 SBT Hình học 10
Bài tập 1.85 trang 47 SBT Hình học 10
Bài tập 1.86 trang 48 SBT Hình học 10
Bài tập 1.87 trang 48 SBT Hình học 10
Bài tập 1.88 trang 48 SBT Hình học 10
Bài tập 1.89 trang 49 SBT Hình học 10
Bài tập 1.90 trang 49 SBT Hình học 10
Bài tập 1.91 trang 49 SBT Hình học 10
Bài tập 1.92 trang 49 SBT Hình học 10
Bài tập 1.93 trang 49 SBT Hình học 10
Bài tập 1.95 trang 49 SBT Hình học 10
Bài tập 1.96 trang 49 SBT Hình học 10
Bài tập 1.97 trang 50 SBT Hình học 10
Bài tập 1.98 trang 50 SBT Hình học 10
Bài tập 1.99 trang 50 SBT Hình học 10
Bài tập 1.100 trang 50 SBT Hình học 10
Bài tập 1 trang 34 SGK Hình học 10 NC
Bài tập 2 trang 34 SGK Hình học 10 NC
Bài tập 3 trang 34 SGK Hình học 10 NC
Bài tập 4 trang 34 SGK Hình học 12 NC
Bài tập 5 trang 35 SGK Hình học 12 NC
Bài tập 6 trang 35 SGK Hình học 12 NC
Bài tập 7 trang 36 SGK Hình học 10 NC
Bài tập 8 trang 36 SGK Hình học10 NC
Bài tập 9 trang 36 SGK Hình học 10 NC
Bài tập 10 trang 36 SGK Hình học 10 NC
Bài tập 11 trang 36 SGK Hình học 10 NC
Bài tập 12 trang 37 SGK Hình học 10 NC
Bài tập 13 trang 37 SGK Hình học 10 NC
Bài tập 14 trang 37 SGK Hình học 10 NC
Bài tập 15 trang 37 SGK Hình học 10 NC
Bài tập 16 trang 37 SGK Hình học 10 NC
Bài tập 17 trang 37 SGK Hình học 10 NC
Bài tập 18 trang 37 SGK Hình học 10 NC
Bài tập 19 trang 38 SGK Hình học 10 NC
Bài tập 20 trang 38 SGK Hình học 10 NC
Bài tập 21 trang 38 SGK Hình học 10 NC
-
Cho tam giác \(ABC\) và một điểm \(M\) tùy ý. Chứng minh rằng vec tơ \(\overrightarrow v = \overrightarrow {MA} + \overrightarrow {MB} - 2\overrightarrow {MC} \) không phụ thuộc vào vị trí của điểm \(M\). Hãy xác định điểm \(D\) sao cho \(\overrightarrow {CD} = \overrightarrow v \).
bởi Nguyễn Thanh Thảo 22/02/2021
Theo dõi (0) 1 Trả lời -
Cho hai điểm \(A\) và \(B\). Điểm \(M\) thỏa mãn điều kiện \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MA} - \overrightarrow {MB} } \right|\). Chứng minh rằng \(OM = \dfrac{1}{2}AB\), trong đó \(O\) là trung điểm của \(AB\).
bởi thu trang 21/02/2021
Theo dõi (0) 1 Trả lời -
Cho tam giác \(ABC\). Tìm điểm \(M\) thỏa mãn điều kiện \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \).
bởi Nguyễn Thị Thúy 22/02/2021
Theo dõi (0) 1 Trả lời -
Cho lục giác đều \(ABCDEF\) và \(M\) là một điểm tùy ý. Chứng minh rằng: \(\overrightarrow {MA} + \overrightarrow {MC} + \overrightarrow {ME} \)\( = \overrightarrow {MB} + \overrightarrow {MD} + \overrightarrow {MF} \).
bởi Dang Thi 21/02/2021
Theo dõi (0) 1 Trả lời