Giải bài 1.56 tr 43 SBT Hình học 10
Cho tam giác \(ABC\) và một điểm \(M\) tùy ý. Chứng minh rằng vec tơ \(\overrightarrow v = \overrightarrow {MA} + \overrightarrow {MB} - 2\overrightarrow {MC} \) không phụ thuộc vào vị trí của điểm \(M\). Hãy xác định điểm \(D\) sao cho \(\overrightarrow {CD} = \overrightarrow v \).
Hướng dẫn giải chi tiết
\(\overrightarrow v = \overrightarrow {MA} + \overrightarrow {MB} - 2\overrightarrow {MC} \)\( = 2\overrightarrow {ME} - 2\overrightarrow {MC} \) (\(E\) là trung điểm cạnh \(AB\))
\( = 2\left( {\overrightarrow {ME} - \overrightarrow {MC} } \right) = 2\overrightarrow {CE} \)
Vậy \(\overrightarrow v \) không phụ thuộc vị trí của điểm \(M\).
Nếu \(\overrightarrow {CD} = \overrightarrow v = 2\overrightarrow {CE} \) thì \(E\) là trung điểm của \(CD\).
Vậy ta xác định được điểm \(D\).
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Bài tập 1.54 trang 43 SBT Hình học 10
Bài tập 1.55 trang 43 SBT Hình học 10
Bài tập 1.57 trang 44 SBT Hình học 10
Bài tập 1.58 trang 44 SBT Hình học 10
Bài tập 1.59 trang 44 SBT Hình học 10
Bài tập 1.60 trang 44 SBT Hình học 10
Bài tập 1.61 trang 44 SBT Hình học 10
Bài tập 1.62 trang 44 SBT Hình học 10
Bài tập 1.63 trang 44 SBT Hình học 10
Bài tập 1.64 trang 45 SBT Hình học 10
Bài tập 1.65 trang 45 SBT Hình học 10
Bài tập 1.66 trang 45 SBT Hình học 10
Bài tập 1.67 trang 45 SBT Hình học 10
Bài tập 1.68 trang 45 SBT Hình học 10
Bài tập 1.69 trang 45 SBT Hình học 10
Bài tập 1.70 trang 45 SBT Hình học 10
Bài tập 1.71 trang 46 SBT Hình học 10
Bài tập 1.72 trang 46 SBT Hình học 10
Bài tập 1.73 trang 46 SBT Hình học 10
Bài tập 1.74 trang 46 SBT Hình học 10
Bài tập 1.75 trang 46 SBT Hình học 10
Bài tập 1.76 trang 46 SBT Hình học 10
Bài tập 1.77 trang 46 SBT Hình học 10
Bài tập 1.78 trang 46 SBT Hình học 10
Bài tập 1.79 trang 47 SBT Hình học 10
Bài tập 1.80 trang 47 SBT Hình học 10
Bài tập 1.81 trang 47 SBT Hình học 10
Bài tập 1.82 trang 47 SBT Hình học 10
Bài tập 1.83 trang 47 SBT Hình học 10
Bài tập 1.84 trang 48 SBT Hình học 10
Bài tập 1.85 trang 47 SBT Hình học 10
Bài tập 1.86 trang 48 SBT Hình học 10
Bài tập 1.87 trang 48 SBT Hình học 10
Bài tập 1.88 trang 48 SBT Hình học 10
Bài tập 1.89 trang 49 SBT Hình học 10
Bài tập 1.90 trang 49 SBT Hình học 10
Bài tập 1.91 trang 49 SBT Hình học 10
Bài tập 1.92 trang 49 SBT Hình học 10
Bài tập 1.93 trang 49 SBT Hình học 10
Bài tập 1.95 trang 49 SBT Hình học 10
Bài tập 1.96 trang 49 SBT Hình học 10
Bài tập 1.97 trang 50 SBT Hình học 10
Bài tập 1.98 trang 50 SBT Hình học 10
Bài tập 1.99 trang 50 SBT Hình học 10
Bài tập 1.100 trang 50 SBT Hình học 10
Bài tập 1 trang 34 SGK Hình học 10 NC
Bài tập 2 trang 34 SGK Hình học 10 NC
Bài tập 3 trang 34 SGK Hình học 10 NC
Bài tập 4 trang 34 SGK Hình học 12 NC
Bài tập 5 trang 35 SGK Hình học 12 NC
Bài tập 6 trang 35 SGK Hình học 12 NC
Bài tập 7 trang 36 SGK Hình học 10 NC
Bài tập 8 trang 36 SGK Hình học10 NC
Bài tập 9 trang 36 SGK Hình học 10 NC
Bài tập 10 trang 36 SGK Hình học 10 NC
Bài tập 11 trang 36 SGK Hình học 10 NC
Bài tập 12 trang 37 SGK Hình học 10 NC
Bài tập 13 trang 37 SGK Hình học 10 NC
Bài tập 14 trang 37 SGK Hình học 10 NC
Bài tập 15 trang 37 SGK Hình học 10 NC
Bài tập 16 trang 37 SGK Hình học 10 NC
Bài tập 17 trang 37 SGK Hình học 10 NC
Bài tập 18 trang 37 SGK Hình học 10 NC
Bài tập 19 trang 38 SGK Hình học 10 NC
Bài tập 20 trang 38 SGK Hình học 10 NC
Bài tập 21 trang 38 SGK Hình học 10 NC
-
Trong khẳng định sau, khẳng định nào là đúng: Nếu tứ giác \(ABCD\) là hình bình hành thì trung bình cộng các tọa độ tương ứng của \(A\) và \(C\) bằng trung bình cộng các tọa độ tương ứng của \(B\) và \(D\).
bởi Trần Bảo Việt 20/02/2021
Theo dõi (0) 1 Trả lời -
Trong khẳng định sau, khẳng định nào là đúng: \(P\) là trung điểm của đoạn thẳng \(AB\) khi và chỉ khi hoành độ của \(P\) bằng trung bình cộng các hoành độ của \(A\) và \(B\).
bởi Nguyễn Hiền 19/02/2021
Theo dõi (0) 1 Trả lời -
Trong khẳng định sau, khẳng định nào là đúng: Điểm \(A\) nằm trên trục hoành thì có hoành độ bằng \(0\).
bởi Nguyễn Minh Hải 19/02/2021
Theo dõi (0) 1 Trả lời -
Cho: \(\overrightarrow u = {1 \over 2}\overrightarrow i - 5\overrightarrow j , \, \, \, \overrightarrow v = \overrightarrow {mi} - 4\overrightarrow j. \) Tìm \(m\) để \(\overrightarrow u\) và \(\overrightarrow v \) cùng phương.
bởi Nguyễn Quang Thanh Tú 19/02/2021
Theo dõi (0) 1 Trả lời