RANDOM
RANDOM
Video-Banner

Bài tập 10 trang 46 SGK Giải tích 12

Giải bài 10 tr 46 sách GK Toán GT lớp 12

Cho hàm số \(y=-{{x}^{4}}+2m{{x}^{2}}-2m+1\) với (m tham số) có đồ thị \(\left( {{C}_{m}} \right)\).

a) Biện luận theo m số cực trị của hàm số.

b) Với giá trị nào của m thì \(\left( {{C}_{m}} \right)\) cắt trục hoành?

c) Xác định m để \(\left( {{C}_{m}} \right)\) có cực đại, cực tiểu.

QUẢNG CÁO

Hướng dẫn giải chi tiết bài 10

Câu a:

y= - x4 + 2mx2  - 2m + 1

Tập xác định: D = R

y'= - 4x3 + 4mx = - 4x (x- m)

y' = 0 ⇔ - 4x (x2 - m) = 0 \(\Leftrightarrow \bigg \lbrack \begin{matrix} x=0\\ x^2-m=0 \end{matrix}\)

+ Nếu \(m\leq 0\) thì \(x^2-m\geq 0\).

Ta có bảng xét dấu y':

⇒ Hàm số có một điểm cực đại là x = 0.

+ Nếu m > 0 thì :

\(x^2-m=0 \Leftrightarrow \bigg \lbrack \begin{matrix} x=-\sqrt{m}\\ x=\sqrt{m} \end{matrix}\).

Ta có bảng xét dấu y':

 ⇒ Hàm số có hai điểm cực đại là \(x=-\sqrt{m}\) và \(x=\sqrt{m}\), hàm số có một điểm cực tiểu là x = 0.

Vậy với \(m\leq 0\) thì hàm số có một cực trị.

Với m > 0 thì hàm số có ba cực trị.

Câu b:

Xét hàm số y = f(x) = -x4 + 2mx2 - 2m + 1.

Ta có: \(f(\pm 1)=0 \ \forall m\)

⇒ đồ thị cắt Ox tại ít nhất 2 điểm.

Vậy mới mọi m thì đồ thị luôn cắt trục hoành.

Câu c:

Từ câu a ta có đồ thị có cực đại, cực tiểu khi m > 0.

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 10 trang 46 SGK Giải tích 12 HAY thì click chia sẻ 

Bài tập SGK khác

Bài tập 8 trang 46 SGK Giải tích 12

Bài tập 9 trang 46 SGK Giải tích 12

Bài tập 11 trang 46 SGK Giải tích 12

Bài tập 12 trang 47 SGK Giải tích 12

Bài tập 1 trang 47 SGK Giải tích 12

Bài tập 2 trang 47 SGK Giải tích 12

Bài tập 3 trang 47 SGK Giải tích 12

Bài tập 4 trang 47 SGK Giải tích 12

Bài tập 5 trang 47 SGK Giải tích 12

Bài tập 1.75 trang 39 SBT Toán 12

Bài tập 1.76 trang 40 SBT Toán 12

Bài tập 1.77 trang 40 SBT Toán 12

Bài tập 1.78 trang 40 SBT Toán 12

Bài tập 1.79 trang 40 SBT Toán 12

Bài tập 1.80 trang 40 SBT Toán 12

Bài tập 1.81 trang 41 SBT Toán 12

Bài tập 1.82 trang 41 SBT Toán 12

Bài tập 1.83 trang 41 SBT Toán 12

Bài tập 1.84 trang 41 SBT Toán 12

Bài tập 1.85 trang 41 SBT Toán 12

Bài tập 1.86 trang 41 SBT Toán 12

Bài tập 1.87 trang 41 SBT Toán 12

Bài tập 1.88 trang 42 SBT Toán 12

Bài tập 1.89 trang 42 SBT Toán 12

Bài tập 1.90 trang 42 SBT Toán 12

Bài tập 1.91 trang 42 SBT Toán 12

Bài tập 1.92 trang 42 SBT Toán 12

Bài tập 1.93 trang 42 SBT Toán 12

Bài tập 1.94 trang 42 SBT Toán 12

Bài tập 1.95 trang 43 SBT Toán 12

Bài tập 1.96 trang 43 SBT Toán 12

Bài tập 68 trang 61 SGK Toán 12 NC

Bài tập 69 trang 61 SGK Toán 12 NC

Bài tập 70 trang 61 SGK Toán 12 NC

Bài tập 71 trang 62 SGK Toán 12 NC

Bài tập 72 trang 62 SGK Toán 12 NC

Bài tập 73 trang 62 SGK Toán 12 NC

Bài tập 74 trang 62 SGK Toán 12 NC

Bài tập 75 trang 62 SGK Toán 12 NC

Bài tập 76 trang 62 SGK Toán 12 NC

Bài tập 77 trang 62 SGK Toán 12 NC

Bài tập 78 trang 62 SGK Toán 12 NC

Bài tập 79 trang 62 SGK Toán 12 NC

Bài tập 80 trang 64 SGK Toán 12 NC

Bài tập 81 trang 64 SGK Toán 12 NC

Bài tập 82 trang 64 SGK Toán 12 NC

Bài tập 83 trang 64 SGK Toán 12 NC

Bài tập 84 trang 65 SGK Toán 12 NC

Bài tập 85 trang 65 SGK Toán 12 NC

Bài tập 86 trang 65 SGK Toán 12 NC

Bài tập 87 trang 65 SGK Toán 12 NC

Bài tập 88 trang 65 SGK Toán 12 NC

Bài tập 89 trang 65 SGK Toán 12 NC

Bài tập 90 trang 65 SGK Toán 12 NC

Bài tập 91 trang 65 SGK Toán 12 NC

Bài tập 92 trang 66 SGK Toán 12 NC

Bài tập 93 trang 66 SGK Toán 12 NC

Bài tập 94 trang 66 SGK Toán 12 NC

Bài tập 95 trang 66 SGK Toán 12 NC

Bài tập 96 trang 66 SGK Toán 12 NC

Bài tập 97 trang 67 SGK Toán 12 NC

Bài tập 98 trang 67 SGK Toán 12 NC

Bài tập 99 trang 67 SGK Toán 12 NC

Bài tập 100 trang 67 SGK Toán 12 NC

YOMEDIA