Giải bài 1.85 tr 41 SBT Toán 12
Xác định giá trị của tham số m để hàm số \(y = \frac{{{x^2} + \left( {m + 1} \right)x - 1}}{{2 - x}}\) nghịch biến trên mỗi khoảng xác định của nó.
A. \(m = - 1\)
B. \(m > 1\)
C. \(m \in \left( { - 1;1} \right)\)
D. \(m \le - \frac{5}{2}\)
Hướng dẫn giải chi tiết
Ta có:
\(y' = \frac{{\left( {2x + m + 1} \right)\left( {2 - x} \right) + \left[ {{x^2} + \left( {m + 1} \right)x - 1} \right]}}{{{{\left( {2 - x} \right)}^2}}} \)
\(= \frac{{ - {x^2} + 4x + 2m + 1}}{{{{\left( {2 - x} \right)}^2}}}\)
Hàm số nghịch biến trên mỗi khoảng xác định D nếu và chỉ nếu \(y' \le 0,\forall x \in D\) và chỉ bằng 0 tại hữu hạn điểm.
Dễ thấy y′ = 0 tại tối đa hai điểm nên ta cần \(y' \le 0,\forall x \ne 2\)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\Leftrightarrow - {x^2} + 4x + 2m + 1 \le 0,\forall x \ne 2\\
\Leftrightarrow \Delta ' = 4 + 2m + 1 \le 0
\end{array}\\
{ \Leftrightarrow m \le - \frac{5}{2}}
\end{array}\)
Chọn D.
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 1.83 trang 41 SBT Toán 12
Bài tập 1.84 trang 41 SBT Toán 12
Bài tập 1.86 trang 41 SBT Toán 12
Bài tập 1.87 trang 41 SBT Toán 12
Bài tập 1.88 trang 42 SBT Toán 12
Bài tập 1.89 trang 42 SBT Toán 12
Bài tập 1.90 trang 42 SBT Toán 12
Bài tập 1.91 trang 42 SBT Toán 12
Bài tập 1.92 trang 42 SBT Toán 12
Bài tập 1.93 trang 42 SBT Toán 12
Bài tập 1.94 trang 42 SBT Toán 12
Bài tập 1.95 trang 43 SBT Toán 12
Bài tập 1.96 trang 43 SBT Toán 12
Bài tập 68 trang 61 SGK Toán 12 NC
Bài tập 69 trang 61 SGK Toán 12 NC
Bài tập 70 trang 61 SGK Toán 12 NC
Bài tập 71 trang 62 SGK Toán 12 NC
Bài tập 72 trang 62 SGK Toán 12 NC
Bài tập 73 trang 62 SGK Toán 12 NC
Bài tập 74 trang 62 SGK Toán 12 NC
Bài tập 75 trang 62 SGK Toán 12 NC
Bài tập 76 trang 62 SGK Toán 12 NC
Bài tập 77 trang 62 SGK Toán 12 NC
Bài tập 78 trang 62 SGK Toán 12 NC
Bài tập 79 trang 62 SGK Toán 12 NC
Bài tập 80 trang 64 SGK Toán 12 NC
Bài tập 81 trang 64 SGK Toán 12 NC
Bài tập 82 trang 64 SGK Toán 12 NC
Bài tập 83 trang 64 SGK Toán 12 NC
Bài tập 84 trang 65 SGK Toán 12 NC
Bài tập 85 trang 65 SGK Toán 12 NC
Bài tập 86 trang 65 SGK Toán 12 NC
Bài tập 87 trang 65 SGK Toán 12 NC
Bài tập 88 trang 65 SGK Toán 12 NC
Bài tập 89 trang 65 SGK Toán 12 NC
Bài tập 90 trang 65 SGK Toán 12 NC
Bài tập 91 trang 65 SGK Toán 12 NC
Bài tập 92 trang 66 SGK Toán 12 NC
Bài tập 93 trang 66 SGK Toán 12 NC
Bài tập 94 trang 66 SGK Toán 12 NC
Bài tập 95 trang 66 SGK Toán 12 NC
Bài tập 96 trang 66 SGK Toán 12 NC
Bài tập 97 trang 67 SGK Toán 12 NC
Bài tập 98 trang 67 SGK Toán 12 NC
-
A. Đồ thị hàm số luôn có điểm đối xứng.
B. Đồ thị hàm số luôn cắt trục hoành
C. Hàm số luôn có cực trị.
D. \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).
Theo dõi (0) 1 Trả lời -
Tâm đối xứng của đồ thị hàm số đã cho nào sau đây cách gốc tọa độ một khoảng lớn nhất ?
bởi Nguyễn Trà Long 31/05/2021
A. \(y = \dfrac{{2x - 1}}{ {x + 3}}\)
B. \(y =\dfrac {{1 - x} }{ {1 + x}}\)
C. \(y = 2{x^3} - 3{x^2} - 2\)
D. \(y = - {x^3} + 3x - 2\).
Theo dõi (0) 1 Trả lời -
Gọi M, N là giao điểm của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) và đường thẳng d: y = x + 2. Hoành độ trung điểm I của đoạn MN là đáp án
bởi thu thủy 31/05/2021
A. \( - \dfrac{5 }{2}\)
B. \( -\dfrac {1 }{ 2}\)
C. 1
D. \(\dfrac{1 }{ 2}\).
Theo dõi (0) 1 Trả lời -
Cho hàm số sau y = f(x) có bảng biến thiên như sau. Tập tất cả các giá trị của tham số m để phương trình f(x) + m= 0 có ba nghiệm phân biệt là:
bởi Ngoc Son 01/06/2021
Cho hàm số y = f(x) có bảng biến thiên như sau:
A. (-2; 1)
B. [-1 ; 2)
C. (-1 ; 2)
D. (- 2 ;1]
Theo dõi (0) 1 Trả lời -
ADMICRO
Cho hàm số sau y = f(x) có bảng biến thiên như dưới đây. Mệnh đề nào sau đây sai ?
bởi Nguyễn Thị An 31/05/2021
A. Hàm số có ba điểm cực trị.
B. Hàm số có giá trị cực đại bằng 3.
C. Hàm số có giá trị cực đại bằng 0.
D. Hàm số có hai điểm cực tiểu.
Theo dõi (0) 1 Trả lời -
A. \(y = {x^4} + {x^2} + 1\)
B. \(y = {x^3} + 1\)
C. \(y =\dfrac {{4x + 1} }{ {x + 2}}\)
D. \(y = \tan x\)
Theo dõi (0) 1 Trả lời -
A. Hàm số đồng biến trên khoảng \(( - \infty ; - 1)\) và nghịch biến trên khoảng \((1; + \infty )\).
B. Hàm số đồng biến trên khoảng \(( - \infty ; + \infty )\).
C. Hàm số nghịch biến trên khoảng \(( - \infty ; - 1)\) và đồng biến trên khoảng \((1; + \infty )\).
D. Hàm số nghịch biến trên khoảng (- 1 ;1).
Theo dõi (0) 1 Trả lời -
Đồ thị hàm số sau \(y = \dfrac{{2x - 3} }{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là
bởi Nguyễn Lê Thảo Trang 01/06/2021
A. x= 2 và y = 1
B. x = 1 và y= - 3
C. x= - 1 và y= 2
D. x = 1 và y= 2
Theo dõi (0) 1 Trả lời