OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tâm đối xứng của đồ thị hàm số đã cho nào sau đây cách gốc tọa độ một khoảng lớn nhất ?

A. \(y = \dfrac{{2x - 1}}{ {x + 3}}\)                

B. \(y =\dfrac {{1 - x} }{ {1 + x}}\)                  

C. \(y = 2{x^3} - 3{x^2} - 2\)      

D. \(y =  - {x^3} + 3x - 2\).

  bởi Nguyễn Trà Long 31/05/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Đáp án A: tâm đối xứng \(I\left( { - 3;2} \right)\) \( \Rightarrow OI = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}}  = \sqrt {13} \) 

    Đáp án B: tâm đối xứng \(I\left( { - 1; - 1} \right)\) \( \Rightarrow OI = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}}  = \sqrt 2 \)

    Đáp án C:

    \(\begin{array}{l}y' = 6{x^2} - 6x\\y'' = 12x - 6 = 0 \Leftrightarrow x = \frac{1}{2}\\ \Rightarrow y\left( {\frac{1}{2}} \right) =  - \frac{5}{2}\end{array}\)

    tâm đối xứng \(I\left( {\frac{1}{2};\frac{5}{2}} \right)\) \( \Rightarrow OI = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{5}{2}} \right)}^2}}  = \frac{{\sqrt {26} }}{2}\)

    Đáp án D:

    \(\begin{array}{l}y' =  - 3{x^2} + 3\\y'' =  - 6x = 0 \Leftrightarrow x = 0\\ \Rightarrow y\left( 0 \right) =  - 2\end{array}\)

    tâm đối xứng \(I\left( {0; - 2} \right)\) \( \Rightarrow OI = \sqrt {{0^2} + {{\left( { - 2} \right)}^2}}  = 2\)

    Vậy điểm cách O khoảng lớn nhất là \(I\left( { - 3;2} \right)\).

    Chọn đáp án A.

      bởi Mai Vi 01/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF