OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 77 trang 62 SGK Toán 12 NC

Bài tập 77 trang 62 SGK Toán 12 NC

Cho hàm số: \(y = \frac{{x - 4m}}{{2(mx - 1)}}\).(Hm)

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m =1.

b) Chứng minh rằng với mọi \(m \ne  \pm \frac{1}{2}\), các đường cong (Hm) đều đi qua hai điểm cố định A và B.

c) Chứng minh rằng tích các hệ số góc của tiếp tuyến với (Hm) tại hai điểm A và B là một hằng số khi m biến thiên.

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

a) m = 1 hàm số có dạng: 

\(y = \frac{{x - 4}}{{2x - 2}}\)

Tập xác định: D = R ∖ {1}

\(y\prime  = \frac{6}{{{{(2x - 2)}^2}}} > 0,\forall x \in D\)

Hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right);(1; + \infty )\)

Hàm số không có cực trị

Giới hạn:

\(\mathop {\lim y}\limits_{x \to {1^ - }}  =  + \infty ;\mathop {\lim y}\limits_{x \to {1^ + }}  =  - \infty \)

Đường tiệm cận đứng: x = 1

\(\mathop {\lim}\limits_{x \to  \pm \infty } y = \frac{1}{2}\)

Đường tiệm cận ngang y = 1/2

Bảng biến thiên:

Đồ thị:

Đồ thị giao Ox, Oy tại các điểm: (4;0); (0;2)

b) Gọi M(x0; y0) là một điểm bất kì của mặt phẳng tọa độ. Đường cong (Hm) đi qua điểm M khi và chỉ khi m là nghiệm của phương trình \(\frac{{{x_o} - 4m}}{{2(m{x_o} - 1)}} = {y_o}\)

\(\begin{array}{l}
 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{m{x_o} - 1 \ne 0}\\
{2{y_o}(m{x_o} - 1) = {x_o} - 4m}
\end{array}} \right.\\
 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{m{x_o} \ne 1\,\,(1)}\\
{(2{x_o}{y_o} + 4)m - {x_o} - 2{y_o} = 0}
\end{array}} \right.
\end{array}\)

Mọi đường cong (Hm) với \(m \ne  \pm \frac{1}{2}\) đều đi qua điểm M(x0; y0) khi và chỉ khi hệ phương trình trên nghiệm đúng với mọi \(m \ne  \pm \frac{1}{2}\)

Phương trình (2) nghiệm đúng với mọi m khi và chỉ khi

\(\begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{2{x_o}{y_o} + 4 = 0}\\
{{x_o} + 2{y_o} = 0}
\end{array}} \right.\\
 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{{x_o} =  - 2}\\
{{y_o} = 1}
\end{array}} \right. \vee \left\{ {\begin{array}{*{20}{l}}
{{x_o} = 2}\\
{{y_o} =  - 1}
\end{array}} \right.
\end{array}\)

Vậy \(\left( {{x_o};{y_o}} \right) = \left( { - 2;1} \right);\left( {{x_o};{y_o}} \right) = \left( {2; - 1} \right)\)

Ta kiểm tra điều kiện (1) 

• Với x0 = −2, ta có m ≠ −1/2

•Với x0 = 2, ta có m ≠ 1/2

Vậy mọi đường cong (Hm) với m ≠ ±1/2 đều đi qua hai điểm cố định A(-2; 1) và B(2; - 1).

c) Ta có: \(y\prime  = \frac{{4{m^2} - 1}}{{2{{(mx - 1)}^2}}}\)

Hệ số góc tiếp tuyến với (Hm) tại A(-2; 1) và B(2;−1) là y’(-2); y'(2).

Ta có tích hai hệ số góc tiếp tuyến tại A và B là:

\(\begin{array}{l}
y'\left( { - 2} \right).y'\left( 2 \right)\\
 = \frac{{4{m^2} - 1}}{{2{{\left( { - 2m - 1} \right)}^2}}}.\frac{{4{m^2} - 1}}{{2{{\left( {2m - 1} \right)}^2}}} = \frac{1}{4}
\end{array}\)

là hằng số

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 77 trang 62 SGK Toán 12 NC HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Đàm Ngọc Ánh

    Trong hệ tọa độ Oxy cho điểm M(1;8). Một đường thẳng qua M cắt hai tia Ox, Oy lần lượt tại A và B. Tìm độ dài ngắn nhất của đoạn thẳng AB.

    Theo dõi (0) 1 Trả lời
  • Dell dell

    M=\(\sqrt{2+\sqrt{ }3}+\sqrt{14-5\sqrt{ }3}\)

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Phạm Khánh Ngọc

    Tìm GTLN GTNN y=\(\sqrt{5-2cos^2xsin^2x}\)

    Theo dõi (0) 1 Trả lời
  • Lan Anh

    Cho pt: sin4x+ (sinx+1)4=m

    a. giải pt khi m=\(\dfrac{1}{8}\)

    b. với giá trị nào của m thì pt có nghiệm

    Theo dõi (0) 1 Trả lời
  • ADMICRO
    thanh hằng

    4 + 8 + 12 +....... + 4n = 180

    Theo dõi (0) 1 Trả lời
  • Lan Ha

    cho các số nguyên dương a,b .biết hàm số \(y=\dfrac{1}{3}\left(a-4\right)x^3+2bx^2+x+5\) đồng biến trên R . Hỏi giá trị nhỏ nhất của biểu thức S= 2a+3b là ?

    A.16 B.19 C.13 D.26

    Theo dõi (0) 1 Trả lời
  • thu trang

    ai cho em hỏi cách tìm GTNN và GTLN với hàm lượng giác được không ạ?huhu em không biết làm vì giải ra nó hay ra nghiệm x=.......+k2\(\pi\) nên em không biết thay ,em xin cảm ơn m.ng trước

    Theo dõi (0) 1 Trả lời
  • Thuy Kim

    Một tạp chí được bán 25 nghìn đồng một cuốn. Chi phí xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức C(x)=0,0001x2−0,2x+11000C(x)=0,0001x2−0,2x+11000, C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 nghìn đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cáo. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có được khi bán tạp chí.

    Theo dõi (0) 1 Trả lời
NONE
OFF