OPTADS360
ADMICRO
AMBIENT
Banner-Video

Bài tập 77 trang 62 SGK Toán 12 NC

Bài tập 77 trang 62 SGK Toán 12 NC

Cho hàm số: \(y = \frac{{x - 4m}}{{2(mx - 1)}}\).(Hm)

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m =1.

b) Chứng minh rằng với mọi \(m \ne  \pm \frac{1}{2}\), các đường cong (Hm) đều đi qua hai điểm cố định A và B.

c) Chứng minh rằng tích các hệ số góc của tiếp tuyến với (Hm) tại hai điểm A và B là một hằng số khi m biến thiên.

QUẢNG CÁO

Hướng dẫn giải chi tiết

a) m = 1 hàm số có dạng: 

\(y = \frac{{x - 4}}{{2x - 2}}\)

Tập xác định: D = R ∖ {1}

\(y\prime  = \frac{6}{{{{(2x - 2)}^2}}} > 0,\forall x \in D\)

Hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right);(1; + \infty )\)

Hàm số không có cực trị

Giới hạn:

\(\mathop {\lim y}\limits_{x \to {1^ - }}  =  + \infty ;\mathop {\lim y}\limits_{x \to {1^ + }}  =  - \infty \)

Đường tiệm cận đứng: x = 1

\(\mathop {\lim}\limits_{x \to  \pm \infty } y = \frac{1}{2}\)

Đường tiệm cận ngang y = 1/2

Bảng biến thiên:

Đồ thị:

Đồ thị giao Ox, Oy tại các điểm: (4;0); (0;2)

b) Gọi M(x0; y0) là một điểm bất kì của mặt phẳng tọa độ. Đường cong (Hm) đi qua điểm M khi và chỉ khi m là nghiệm của phương trình \(\frac{{{x_o} - 4m}}{{2(m{x_o} - 1)}} = {y_o}\)

\(\begin{array}{l}
 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{m{x_o} - 1 \ne 0}\\
{2{y_o}(m{x_o} - 1) = {x_o} - 4m}
\end{array}} \right.\\
 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{m{x_o} \ne 1\,\,(1)}\\
{(2{x_o}{y_o} + 4)m - {x_o} - 2{y_o} = 0}
\end{array}} \right.
\end{array}\)

Mọi đường cong (Hm) với \(m \ne  \pm \frac{1}{2}\) đều đi qua điểm M(x0; y0) khi và chỉ khi hệ phương trình trên nghiệm đúng với mọi \(m \ne  \pm \frac{1}{2}\)

Phương trình (2) nghiệm đúng với mọi m khi và chỉ khi

\(\begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{2{x_o}{y_o} + 4 = 0}\\
{{x_o} + 2{y_o} = 0}
\end{array}} \right.\\
 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{{x_o} =  - 2}\\
{{y_o} = 1}
\end{array}} \right. \vee \left\{ {\begin{array}{*{20}{l}}
{{x_o} = 2}\\
{{y_o} =  - 1}
\end{array}} \right.
\end{array}\)

Vậy \(\left( {{x_o};{y_o}} \right) = \left( { - 2;1} \right);\left( {{x_o};{y_o}} \right) = \left( {2; - 1} \right)\)

Ta kiểm tra điều kiện (1) 

• Với x0 = −2, ta có m ≠ −1/2

•Với x0 = 2, ta có m ≠ 1/2

Vậy mọi đường cong (Hm) với m ≠ ±1/2 đều đi qua hai điểm cố định A(-2; 1) và B(2; - 1).

c) Ta có: \(y\prime  = \frac{{4{m^2} - 1}}{{2{{(mx - 1)}^2}}}\)

Hệ số góc tiếp tuyến với (Hm) tại A(-2; 1) và B(2;−1) là y’(-2); y'(2).

Ta có tích hai hệ số góc tiếp tuyến tại A và B là:

\(\begin{array}{l}
y'\left( { - 2} \right).y'\left( 2 \right)\\
 = \frac{{4{m^2} - 1}}{{2{{\left( { - 2m - 1} \right)}^2}}}.\frac{{4{m^2} - 1}}{{2{{\left( {2m - 1} \right)}^2}}} = \frac{1}{4}
\end{array}\)

là hằng số

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 77 trang 62 SGK Toán 12 NC HAY thì click chia sẻ 
Ngại gì không thử App HOC247
YOMEDIA