OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 3.48 trang 166 SBT Hình học 10

Giải bài 3.48 tr 166 SBT Hình học 10

Cho đường tròn (C): x+ y2 - 6x + 4y - 12 = 0

a) Tìm tọa độ tâm I và bán kính của đường tròn (C);

b) Viết phương trình tiếp tuyến của đườn tròn (C) biết rằng tiếp tuyến song song với đường thẳng d: 5x + 12y + 2012 = 0.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) (C) có tâm I(3;-1) và R = 5.

b) Tiếp tuyến Δ song song với d ⇒ Δ: 5x + 12y + c = 0 (c ≠ 2012)

Δ tiếp xúc với (C) ⇔ d(I, Δ) = R

\(\begin{array}{l}
 \Leftrightarrow \frac{{\left| {5.3 + 12.\left( { - 2} \right) + c} \right|}}{{\sqrt {{5^2} + {{12}^2}} }} = 5\\
 \Leftrightarrow \left| {c - 9} \right| = 65\\
 \Leftrightarrow \left[ \begin{array}{l}
c = 74\\
c =  - 56
\end{array} \right.
\end{array}\)

Vậy Δ: 5x + 12y + 74 = 0 hoặc Δ: 5x + 12y - 56 = 0

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.48 trang 166 SBT Hình học 10 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Bài tập 3 trang 118 SGK Hình học 10 NC

Bài tập 4 trang 118 SGK Hình học 10 NC

Bài tập 5 trang 118 SGK Hình học 10 NC

Bài tập 6 trang 119 SGK Hình học 10 NC

Bài tập 7 trang 119 SGK Hình học 10 NC

Bài tập 8 trang 119 SGK Hình học 10 NC

Bài tập 9 trang 119 SGK Hình học 10 NC

Bài tập 10 trang 119 SGK Hình học 10 NC

Bài tập 11 trang 119 SGK Hình học 10 NC

Bài tập 12 trang 119 SGK Hình học 10 NC

Bài tập 13 trang 120 SGK Hình học 10 NC

Bài tập 14 trang 120 SGK Hình học 10 NC

Bài tập 3.37 trang 164 SBT Hình học 10

Bài tập 3.38 trang 165 SBT Hình học 10

Bài tập 3.39 trang 165 SBT Hình học 10

Bài tập 3.40 trang 165 SBT Hình học 10

Bài tập 3.41 trang 165 SBT Hình học 10

Bài tập 3.42 trang 165 SBT Hình học 10

Bài tập 3.43 trang 165 SBT Hình học 10

Bài tập 3.44 trang 165 SBT Hình học 10

Bài tập 3.45 trang 165 SBT Hình học 10

Bài tập 3.46 trang 166 SBT Hình học 10

Bài tập 3.47 trang 166 SBT Hình học 10

Bài tập 3.49 trang 166 SBT Hình học 10

Bài tập 3.50 trang 166 SBT Hình học 10

Bài tập 3.51 trang 166 SBT Hình học 10

Bài tập 3.52 trang 167 SBT Hình học 10

Bài tập 3.53 trang 167 SBT Hình học 10

Bài tập 3.54 trang 167 SBT Hình học 10

Bài tập 3.55 trang 167 SBT Hình học 10

Bài tập 3.56 trang 167 SBT Hình học 10

Bài tập 3.57 trang 167 SBT Hình học 10

Bài tập 3.58 trang 167 SBT Hình học 10

Bài tập 3.59 trang 167 SBT Hình học 10

Bài tập 3.60 trang 167 SBT Hình học 10

Bài tập 3.61 trang 168 SBT Hình học 10

Bài tập 1 trang 120 SGK Hình học 10 NC

Bài tập 3.62 trang 168 SBT Hình học 10

Bài tập 2 trang 120 SGK Hình học 10 NC

Bài tập 3 trang 120 SGK Hình học 10 NC

Bài tập 3.63 trang 168 SBT Hình học 10

Bài tập 4 trang 120 SGK Hình học 10 NC

Bài tập 5 trang 120 SGK Hình học 10 NC

Bài tập 3.64 trang 168 SBT Hình học 10

Bài tập 3.65 trang 168 SBT Hình học 10

Bài tập 3.66 trang 168 SBT Hình học 10

Bài tập 3.67 trang 168 SBT Hình học 10

Bài tập 6 trang 121 SGK Hình học 10 NC

Bài tập 7 trang 121 SGK Hình học 10 NC

Bài tập 8 trang 121 SGK Hình học 10 NC

Bài tập 9 trang 121 SGK Hình học 10 NC

Bài tập 10 trang 121 SGK Hình học 10 NC

Bài tập 11 trang 121 SGK Hình học 10 NC

Bài tập 12 trang 121 SGK Hình học 10 NC

Bài tập 13 trang 122 SGK Hình học 10 NC

Bài tập 14 trang 122 SGK Hình học 10 NC

Bài tập 15 trang 122 SGK Hình học 10 NC

Bài tập 16 trang 122 SGK Hình học 10 NC

Bài tập 17 trang 122 SGK Hình học 10 NC

Bài tập 18 trang 123 SGK Hình học 10 NC

Bài tập 3.68 trang 169 SBT Hình học 10

Bài tập 19 trang 123 SGK Hình học 10 NC

Bài tập 3.69 trang 169 SBT Hình học 10

Bài tập 20 trang 123 SGK Hình học 10 NC

Bài tập 3.70 trang 169 SBT Hình học 10

Bài tập 21 trang 123 SBT Hình học 10

Bài tập 3.71 trang 169 SBT Hình học 10

Bài tập 22 trang 123 SGK Hình học 10 NC

Bài tập 3.72 trang 169 SBT Hình học 10

Bài tập 23 trang 123 SGK Hình học 10 NC

Bài tập 3.73 trang 169 SBT Hình học 10

Bài tập 24 trang 123 SGK Hình học 10 NC

Bài tập 3.74 trang 169 SBT Hình học 10

Bài tập 3.75 trang 169 SBT Hình học 10

Bài tập 3.76 trang 170 SBT Hình học 10

Bài tập 3.77 trang 170 SBT Hình học 10

Bài tập 3.78 trang 170 SBT Hình học 10

Bài tập 3.79 trang 170 SBT Hình học 10

Bài tập 3.80 trang 170 SBT Hình học 10

Bài tập 3.81 trang 170 SBT Hình học 10

Bài tập 3.82 trang 170 SBT Hình học 10

Bài tập 3.83 trang 170 SBT Hình học 10

Bài tập 3.84 trang 171 SBT Hình học 10

Bài tập 3.85 trang 171 SBT Hình học 10

Bài tập 3.86 trang 171 SBT Hình học 10

Bài tập 3.87 trang 171 SBT Hình học 10

Bài tập 3.88 trang 171 SBT Hình học 10

Bài tập 3.89 trang 171 SBT Hình học 10

Bài tập 3.90 trang 171 SBT Hình học 10

Bài tập 3.91 trang 171 SBT Hình học 10

Bài tập 3.92 trang 172 SBT Hình học 10

Bài tập 3.93 trang 172 SBT Hình học 10

Bài tập 1 trang 93 SGK Hình học 10

Bài tập 2 trang 93 SGK Hình học 10

Bài tập 3 trang 93 SGK Hình học 10

Bài tập 4 trang 93 SGK Hình học 10

Bài tập 5 trang 93 SGK Hình học 10

Bài tập 6 trang 93 SGK Hình học 10

Bài tập 7 trang 93 SGK Hình học 10

Bài tập 8 trang 93 SGK Hình học 10

  • Bi do

    Trong mặt phẳng với hệ trục toạ độ Oxy , cho tam giác ABC cân tại A , trực tâm H (-3;2). Gọi D, E lần lượt là chân đường cao kẻ từ B, C của tam giác ABC. Biết điểm A nằm trên đường thẳng d: x - 3y - 3 = 0, điểm F (-2;3) thuộc đường thẳng DE và HD = 2.Tìm tọa độ điểm A .

    Theo dõi (0) 2 Trả lời
  • Nguyen Ngoc

     Cho \(\triangle ABC\) có trung điểm cạnh BC là \(M(3;-1)\), đường thẳng chứa đường cao kẻ từ B đi qua điểm \(E(-1; -3)\) và đường thẳng chứa AC đi qua điểm \(F(1;3)\). Điểm đối xứng của đỉnh A qua tâm đường tròn ngoại tiếp \(\triangle ABC\) là điểm \(D(4;-2)\). Tìm tọa độ đỉnh A của \(\triangle ABC\) và phương trình đường thẳng BC.

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Bin Nguyễn

    Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang ABCD có \(\small \widehat{BAD}=\widehat{ADC}=90^0\), AD = 2, DC = 4, đỉnh C nằm trên đường thẳng d: 3x – y + 2 = 0. Diểm M nằm trên cạnh AD sao cho AM = 2MD và đường thẳng BM có phương trình là 3x – 2y + 2 = 0. Tìm tọa độ của đỉnh C.
     

    Theo dõi (0) 1 Trả lời
  • Nguyễn Lê Thảo Trang

    Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, \(\small I(\frac{9}{2};\frac{3}{2})\)là tâm hình chữ nhật và M(3;0) là trung điểm của cạnh AD. Tìm tọa độ các đỉnh của hình chữ nhật, biết tung độ của điểm D là một số thực âm.

    Theo dõi (0) 1 Trả lời
NONE
OFF