OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 3.64 trang 168 SBT Hình học 10

Giải bài 3.64 tr 168 SBT Hình học 10

Trong mặt phẳng tọa độ Oxy, cho điểm C(2;0) và elip (E): \(\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\). Tìm tọa độ các điểm A, B thuộc (E), biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Giả sử A(x0; y0). Do A, B đối xứng nhau qua Ox nên B(x0; - y0)

Ta có \(A{B^2} = 4y_0^2\) và \(A{C^2} = {\left( {{x_0} - 2} \right)^2} + y_0^2\)

Vì \(A \in \left( E \right)\) nên \(\frac{{x_0^2}}{4} + y_0^2 = 1 \Rightarrow y_0^2 = 1 - \frac{{x_0^2}}{4}\) (1)

Vì AB = AC nên \(\frac{{x_0^2}}{4} + y_0^2 = 1 \Rightarrow y_0^2 = 1 - \frac{{x_0^2}}{4}\) (2)

Thay (1) vào (2) và rút gọn ta được:

\(7x_0^2 - 16{x_0} + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}
{x_0} = 2\\
{x_0} = \frac{2}{7}
\end{array} \right.\)

+ Với x0 = 2 thay vào (1) ta có y0 = 0. Trường hợp này loại vì A ≡ C.

+ Với \({x_0} = \frac{2}{7}\) thay vào (1) ta có \({y_0} =  \pm \frac{{4\sqrt 3 }}{7}\)

Vậy \(A\left( {\frac{2}{7};\frac{{4\sqrt 3 }}{7}} \right),B\left( {\frac{2}{7}; - \frac{{4\sqrt 3 }}{7}} \right)\) hoặc \(A\left( {\frac{2}{7}; - \frac{{4\sqrt 3 }}{7}} \right),B\left( {\frac{2}{7};\frac{{4\sqrt 3 }}{7}} \right)\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.64 trang 168 SBT Hình học 10 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Bài tập 3 trang 118 SGK Hình học 10 NC

Bài tập 4 trang 118 SGK Hình học 10 NC

Bài tập 5 trang 118 SGK Hình học 10 NC

Bài tập 6 trang 119 SGK Hình học 10 NC

Bài tập 7 trang 119 SGK Hình học 10 NC

Bài tập 8 trang 119 SGK Hình học 10 NC

Bài tập 9 trang 119 SGK Hình học 10 NC

Bài tập 10 trang 119 SGK Hình học 10 NC

Bài tập 11 trang 119 SGK Hình học 10 NC

Bài tập 12 trang 119 SGK Hình học 10 NC

Bài tập 13 trang 120 SGK Hình học 10 NC

Bài tập 14 trang 120 SGK Hình học 10 NC

Bài tập 3.37 trang 164 SBT Hình học 10

Bài tập 3.38 trang 165 SBT Hình học 10

Bài tập 3.39 trang 165 SBT Hình học 10

Bài tập 3.40 trang 165 SBT Hình học 10

Bài tập 3.41 trang 165 SBT Hình học 10

Bài tập 3.42 trang 165 SBT Hình học 10

Bài tập 3.43 trang 165 SBT Hình học 10

Bài tập 3.44 trang 165 SBT Hình học 10

Bài tập 3.45 trang 165 SBT Hình học 10

Bài tập 3.46 trang 166 SBT Hình học 10

Bài tập 3.47 trang 166 SBT Hình học 10

Bài tập 3.48 trang 166 SBT Hình học 10

Bài tập 3.49 trang 166 SBT Hình học 10

Bài tập 3.50 trang 166 SBT Hình học 10

Bài tập 3.51 trang 166 SBT Hình học 10

Bài tập 3.52 trang 167 SBT Hình học 10

Bài tập 3.53 trang 167 SBT Hình học 10

Bài tập 3.54 trang 167 SBT Hình học 10

Bài tập 3.55 trang 167 SBT Hình học 10

Bài tập 3.56 trang 167 SBT Hình học 10

Bài tập 3.57 trang 167 SBT Hình học 10

Bài tập 3.58 trang 167 SBT Hình học 10

Bài tập 3.59 trang 167 SBT Hình học 10

Bài tập 3.60 trang 167 SBT Hình học 10

Bài tập 3.61 trang 168 SBT Hình học 10

Bài tập 1 trang 120 SGK Hình học 10 NC

Bài tập 3.62 trang 168 SBT Hình học 10

Bài tập 2 trang 120 SGK Hình học 10 NC

Bài tập 3 trang 120 SGK Hình học 10 NC

Bài tập 3.63 trang 168 SBT Hình học 10

Bài tập 4 trang 120 SGK Hình học 10 NC

Bài tập 5 trang 120 SGK Hình học 10 NC

Bài tập 3.65 trang 168 SBT Hình học 10

Bài tập 3.66 trang 168 SBT Hình học 10

Bài tập 3.67 trang 168 SBT Hình học 10

Bài tập 6 trang 121 SGK Hình học 10 NC

Bài tập 7 trang 121 SGK Hình học 10 NC

Bài tập 8 trang 121 SGK Hình học 10 NC

Bài tập 9 trang 121 SGK Hình học 10 NC

Bài tập 10 trang 121 SGK Hình học 10 NC

Bài tập 11 trang 121 SGK Hình học 10 NC

Bài tập 12 trang 121 SGK Hình học 10 NC

Bài tập 13 trang 122 SGK Hình học 10 NC

Bài tập 14 trang 122 SGK Hình học 10 NC

Bài tập 15 trang 122 SGK Hình học 10 NC

Bài tập 16 trang 122 SGK Hình học 10 NC

Bài tập 17 trang 122 SGK Hình học 10 NC

Bài tập 18 trang 123 SGK Hình học 10 NC

Bài tập 3.68 trang 169 SBT Hình học 10

Bài tập 19 trang 123 SGK Hình học 10 NC

Bài tập 3.69 trang 169 SBT Hình học 10

Bài tập 20 trang 123 SGK Hình học 10 NC

Bài tập 3.70 trang 169 SBT Hình học 10

Bài tập 21 trang 123 SBT Hình học 10

Bài tập 3.71 trang 169 SBT Hình học 10

Bài tập 22 trang 123 SGK Hình học 10 NC

Bài tập 3.72 trang 169 SBT Hình học 10

Bài tập 23 trang 123 SGK Hình học 10 NC

Bài tập 3.73 trang 169 SBT Hình học 10

Bài tập 24 trang 123 SGK Hình học 10 NC

Bài tập 3.74 trang 169 SBT Hình học 10

Bài tập 3.75 trang 169 SBT Hình học 10

Bài tập 3.76 trang 170 SBT Hình học 10

Bài tập 3.77 trang 170 SBT Hình học 10

Bài tập 3.78 trang 170 SBT Hình học 10

Bài tập 3.79 trang 170 SBT Hình học 10

Bài tập 3.80 trang 170 SBT Hình học 10

Bài tập 3.81 trang 170 SBT Hình học 10

Bài tập 3.82 trang 170 SBT Hình học 10

Bài tập 3.83 trang 170 SBT Hình học 10

Bài tập 3.84 trang 171 SBT Hình học 10

Bài tập 3.85 trang 171 SBT Hình học 10

Bài tập 3.86 trang 171 SBT Hình học 10

Bài tập 3.87 trang 171 SBT Hình học 10

Bài tập 3.88 trang 171 SBT Hình học 10

Bài tập 3.89 trang 171 SBT Hình học 10

Bài tập 3.90 trang 171 SBT Hình học 10

Bài tập 3.91 trang 171 SBT Hình học 10

Bài tập 3.92 trang 172 SBT Hình học 10

Bài tập 3.93 trang 172 SBT Hình học 10

Bài tập 1 trang 93 SGK Hình học 10

Bài tập 2 trang 93 SGK Hình học 10

Bài tập 3 trang 93 SGK Hình học 10

Bài tập 4 trang 93 SGK Hình học 10

Bài tập 5 trang 93 SGK Hình học 10

Bài tập 6 trang 93 SGK Hình học 10

Bài tập 7 trang 93 SGK Hình học 10

Bài tập 8 trang 93 SGK Hình học 10

  • Tra xanh

    Trong mặt phẳng Oxy cho tam giác ABC có B (-4 ,- 4) Gọi D ,E ,F lần lượt là chân đường cao hạ từ các đỉnh A, B, C điểm G là điểm thuộc tia đối tia DE thỏa mãn DG =DF .cho G(2, - 6 ),C thuộc d: 2x + y - 8 = 0 .Viết phương trình cạnh AB

    Theo dõi (0) 1 Trả lời
  • cuc trang

    Trong mặt phẳng oxy,cho điểm I(1,4). Tìm tọa độ điểm M thuộc trục hoành và điểm Nthuộc trục tung sao cho tam giác IMN vuông cân tại I.

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Bi do

    cho hình thang ABCD có diện tích là 384cm2. đáy lớn bằng 3 lần đáy bé. hai đường chéo cắt nhau tại O.tìm diện tích tam giác DOC

    Theo dõi (0) 1 Trả lời
  • Anh Nguyễn

    cho tam giác ABC có góc nhọn A , D và E là 2 điểm nằm ngoài tam giac sao cho tam giác ABD và tam giác ACE vuoong cân tại A . M trung điểm BC . chứng minh AM vuông DE

    Theo dõi (0) 1 Trả lời
NONE
OFF