OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 3.56 trang 167 SBT Hình học 10

Giải bài 3.56 tr 167 SBT Hình học 10

Trong mặt phẳng tọa độ Oxy, cho điểm A(2;2) và các đường thẳng d1: x + y - 2 = 0 ; d2: x + y - 8 = 0. Tìm tọa độ các điểm B và C lần lượt thuộc d1 và d2 sao cho tam giác ABC vuông cân tại A.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vì B ∈ d1, C ∈ d2 nên B(b; 2 - b), C(c; 8 - c)

Tam giác ABC vuông cân tại A

\(\begin{array}{l}
 \Leftrightarrow \left\{ \begin{array}{l}
\overrightarrow {AB} .\overrightarrow {AC}  = 0\\
AB = AC
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
bc - 4b - c + 2 = 0\\
{b^2} - 2b = {c^2} - 8c + 18
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
\left( {b - 1} \right)\left( {c - 4} \right) = 2\\
{\left( {b - 1} \right)^2}{\left( {c - 4} \right)^2} = 3
\end{array} \right.
\end{array}\)

Đặt x = b – 1, y = c – 4 ta có hệ :

\(\left\{ \begin{array}{l}
x.y = 2\\
{x^2} - {y^2} = 3
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x =  - 2\\
y =  - 1
\end{array} \right. \vee \left\{ \begin{array}{l}
x = 2\\
y = 1
\end{array} \right.\)

Vậy B(-1; 3), C(3; 5) hoặc B(3; -1), C(5; 3)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.56 trang 167 SBT Hình học 10 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Bài tập 3 trang 118 SGK Hình học 10 NC

Bài tập 4 trang 118 SGK Hình học 10 NC

Bài tập 5 trang 118 SGK Hình học 10 NC

Bài tập 6 trang 119 SGK Hình học 10 NC

Bài tập 7 trang 119 SGK Hình học 10 NC

Bài tập 8 trang 119 SGK Hình học 10 NC

Bài tập 9 trang 119 SGK Hình học 10 NC

Bài tập 10 trang 119 SGK Hình học 10 NC

Bài tập 11 trang 119 SGK Hình học 10 NC

Bài tập 12 trang 119 SGK Hình học 10 NC

Bài tập 13 trang 120 SGK Hình học 10 NC

Bài tập 14 trang 120 SGK Hình học 10 NC

Bài tập 3.37 trang 164 SBT Hình học 10

Bài tập 3.38 trang 165 SBT Hình học 10

Bài tập 3.39 trang 165 SBT Hình học 10

Bài tập 3.40 trang 165 SBT Hình học 10

Bài tập 3.41 trang 165 SBT Hình học 10

Bài tập 3.42 trang 165 SBT Hình học 10

Bài tập 3.43 trang 165 SBT Hình học 10

Bài tập 3.44 trang 165 SBT Hình học 10

Bài tập 3.45 trang 165 SBT Hình học 10

Bài tập 3.46 trang 166 SBT Hình học 10

Bài tập 3.47 trang 166 SBT Hình học 10

Bài tập 3.48 trang 166 SBT Hình học 10

Bài tập 3.49 trang 166 SBT Hình học 10

Bài tập 3.50 trang 166 SBT Hình học 10

Bài tập 3.51 trang 166 SBT Hình học 10

Bài tập 3.52 trang 167 SBT Hình học 10

Bài tập 3.53 trang 167 SBT Hình học 10

Bài tập 3.54 trang 167 SBT Hình học 10

Bài tập 3.55 trang 167 SBT Hình học 10

Bài tập 3.57 trang 167 SBT Hình học 10

Bài tập 3.58 trang 167 SBT Hình học 10

Bài tập 3.59 trang 167 SBT Hình học 10

Bài tập 3.60 trang 167 SBT Hình học 10

Bài tập 3.61 trang 168 SBT Hình học 10

Bài tập 1 trang 120 SGK Hình học 10 NC

Bài tập 3.62 trang 168 SBT Hình học 10

Bài tập 2 trang 120 SGK Hình học 10 NC

Bài tập 3 trang 120 SGK Hình học 10 NC

Bài tập 3.63 trang 168 SBT Hình học 10

Bài tập 4 trang 120 SGK Hình học 10 NC

Bài tập 5 trang 120 SGK Hình học 10 NC

Bài tập 3.64 trang 168 SBT Hình học 10

Bài tập 3.65 trang 168 SBT Hình học 10

Bài tập 3.66 trang 168 SBT Hình học 10

Bài tập 3.67 trang 168 SBT Hình học 10

Bài tập 6 trang 121 SGK Hình học 10 NC

Bài tập 7 trang 121 SGK Hình học 10 NC

Bài tập 8 trang 121 SGK Hình học 10 NC

Bài tập 9 trang 121 SGK Hình học 10 NC

Bài tập 10 trang 121 SGK Hình học 10 NC

Bài tập 11 trang 121 SGK Hình học 10 NC

Bài tập 12 trang 121 SGK Hình học 10 NC

Bài tập 13 trang 122 SGK Hình học 10 NC

Bài tập 14 trang 122 SGK Hình học 10 NC

Bài tập 15 trang 122 SGK Hình học 10 NC

Bài tập 16 trang 122 SGK Hình học 10 NC

Bài tập 17 trang 122 SGK Hình học 10 NC

Bài tập 18 trang 123 SGK Hình học 10 NC

Bài tập 3.68 trang 169 SBT Hình học 10

Bài tập 19 trang 123 SGK Hình học 10 NC

Bài tập 3.69 trang 169 SBT Hình học 10

Bài tập 20 trang 123 SGK Hình học 10 NC

Bài tập 3.70 trang 169 SBT Hình học 10

Bài tập 21 trang 123 SBT Hình học 10

Bài tập 3.71 trang 169 SBT Hình học 10

Bài tập 22 trang 123 SGK Hình học 10 NC

Bài tập 3.72 trang 169 SBT Hình học 10

Bài tập 23 trang 123 SGK Hình học 10 NC

Bài tập 3.73 trang 169 SBT Hình học 10

Bài tập 24 trang 123 SGK Hình học 10 NC

Bài tập 3.74 trang 169 SBT Hình học 10

Bài tập 3.75 trang 169 SBT Hình học 10

Bài tập 3.76 trang 170 SBT Hình học 10

Bài tập 3.77 trang 170 SBT Hình học 10

Bài tập 3.78 trang 170 SBT Hình học 10

Bài tập 3.79 trang 170 SBT Hình học 10

Bài tập 3.80 trang 170 SBT Hình học 10

Bài tập 3.81 trang 170 SBT Hình học 10

Bài tập 3.82 trang 170 SBT Hình học 10

Bài tập 3.83 trang 170 SBT Hình học 10

Bài tập 3.84 trang 171 SBT Hình học 10

Bài tập 3.85 trang 171 SBT Hình học 10

Bài tập 3.86 trang 171 SBT Hình học 10

Bài tập 3.87 trang 171 SBT Hình học 10

Bài tập 3.88 trang 171 SBT Hình học 10

Bài tập 3.89 trang 171 SBT Hình học 10

Bài tập 3.90 trang 171 SBT Hình học 10

Bài tập 3.91 trang 171 SBT Hình học 10

Bài tập 3.92 trang 172 SBT Hình học 10

Bài tập 3.93 trang 172 SBT Hình học 10

Bài tập 1 trang 93 SGK Hình học 10

Bài tập 2 trang 93 SGK Hình học 10

Bài tập 3 trang 93 SGK Hình học 10

Bài tập 4 trang 93 SGK Hình học 10

Bài tập 5 trang 93 SGK Hình học 10

Bài tập 6 trang 93 SGK Hình học 10

Bài tập 7 trang 93 SGK Hình học 10

Bài tập 8 trang 93 SGK Hình học 10

  • thanh duy

    Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có điểm A thuộc đường thẳng \(d_{1}: x-y-4=0,\) điểm C(-7; 5), M là điểm thuộc đoạn BC sao cho MB = 3MC, đường thẳng đi qua D và M có phương trình là \(d_{2}:3x-y+18=0.\) Xác định tọa độ của đỉnh A, B biết điểm B có tung độ dương.

    Theo dõi (0) 1 Trả lời
  • cuc trang

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có trung điểm cạnh BC là M(3; -1). Điểm E(-1; -3) nằm trên đường thẳng \(\Delta\) chứa đường cao qua đỉnh B. Đường thẳng AC qua F(1; 3). Tìm tọa độ các đỉnh của \(\triangle ABC\) có đường kính AD với D(4; -2).

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Bình Nguyen

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có trực tâm H(3; 0) và trung điểm của BC là I(6; 1). Đường thẳng AH có phương trình x + 2y - 3 = 0. Gọi D, E lần lượt là chân đường cao kẻ từ B và C của tam giác ABC. Xác định tọa độ các đỉnh của tam giác ABC, biết đường thẳng DE có phương trình x - 2 = 0 và điểm D có tung độ dương.

    Theo dõi (0) 1 Trả lời
  • Thuy Kim

    Trong mặt phẳng tọa độ Oxy, cho hình thoi ABCD có diện tích bằng 40, đường thẳng AD tiếp xúc với đường tròn (S): \((x-4)^2+(y-1)^2=2\), điểm nằm trên đường thẳng AB, đường thẳng AC có phương trình x - 3y + 1 = 0. Tìm tọa độ các điểm A, D biết D có hoành độ nhỏ hơn 5.

    Theo dõi (0) 1 Trả lời
NONE
OFF