Bài tập 22 trang 23 SGK Toán 12 NC
Tìm giá trị của m để hàm số \(f\left( x \right) = \frac{{{x^2} + mx - 1}}{{x - 1}}\) có cực đại và cực tiểu.
Hướng dẫn giải chi tiết
TXĐ: D = R \ {1}
\(\begin{array}{*{20}{l}}
\begin{array}{l}
f'\left( x \right) = \frac{{\left( {2x + m} \right)\left( {x - 1} \right) - \left( {{x^2} + mx - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}\\
= \frac{{{x^2} - 2x + 1 - m}}{{{{\left( {x - 1} \right)}^2}}}
\end{array}\\
{f'\left( x \right) = 0 \Leftrightarrow {x^2} - 2x + 1 - m = 0\left( 1 \right)}
\end{array}\)
Hàm số f có cực đại và cực tiểu khi và chỉ khi phương trình (1) có hai nghiệm phân biệt khác 1, tức là
\(\left\{ \begin{array}{l}
\Delta \prime = m > 0\\
{1^2} - 2.1 + 1 - m \ne 0
\end{array} \right. \Leftrightarrow m > 0\)
Vậy m > 0 thì hàm số f(x) có cực đại và cực tiểu.
-- Mod Toán 12 HỌC247
Bài tập SGK khác
-
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{b+2c}{1+a}+\frac{a+2c}{1+b}+6\ln (a+b+2c).\)
bởi thu trang 07/02/2017
Cho các số thực dương a, b, c thỏa mãn \(ab\geq 1;c(a+b+c)\geq 3.\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{b+2c}{1+a}+\frac{a+2c}{1+b}+6\ln (a+b+2c).\)
Theo dõi (0) 1 Trả lời -
ìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=x^{3}+3x^{2}-9x+1\) trên đoạn [-2; 2].
bởi May May 07/02/2017
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=x^{3}+3x^{2}-9x+1\) trên đoạn [-2; 2].
Theo dõi (0) 1 Trả lời -
Cho a b, là các số thực không âm thỏa mãn: \(2(a^2+b^2)+(a+b)=6\) . Tìm giá trị nhỏ nhất của biểu thức:
\(P=6\left ( \frac{a^2+1}{a^2+a} +\frac{b^2+1}{b^2+b}\right )+\frac{a+b}{\sqrt{(a+b)^2+5}}\)Theo dõi (0) 1 Trả lời -
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f(x)=x^3+3x^2-9x+3\) trên đoạn [-2;2]
bởi thu hảo 07/02/2017
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f(x)=x^3+3x^2-9x+3\) trên đoạn [-2;2]
Theo dõi (0) 1 Trả lời -
ADMICRO
Cho ba số dương a, b, c thay đổi và thỏa mãn a + b + c = 2. Tìm GTLN của biểu thức
\(S=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ca}{ca+2b}}\)
Theo dõi (0) 1 Trả lời -
Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(y=2x^{3}+3x^{2}-12x+1\) trên [-1; 5].
bởi Mai Anh 06/02/2017
Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(y=2x^{3}+3x^{2}-12x+1\) trên [-1; 5].
Theo dõi (0) 2 Trả lời -
Cho các số thực x, y thỏa mãn \((x-4)^{2}+(y-4)^{2}+2xy\leq 32.\) Tìm giá trị nhỏ nhất của biểu thức \(A=x^{3}+y^{3}+3(xy-1)(x+y-2).\)
Theo dõi (0) 1 Trả lời -
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f(x)=(x-\sqrt{2})^{2}(x+\sqrt{2})^{2}\)
bởi Lê Thánh Tông 07/02/2017
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
\(f(x)=(x-\sqrt{2})^{2}(x+\sqrt{2})^{2}\) trên đoạn \(\left [ -\frac{1}{2};2 \right ].\)
Theo dõi (0) 1 Trả lời -
Cho a, b, c là các số thực không âm và thỏa mãn: ab + bc + ca = 1. Tìm GTNN của biểu thức:
\(P=\sqrt{\frac{a}{16(b+c)(a^{2}+bc)}}+\sqrt{\frac{b}{16(a+c)(b^{2}+ac)}}+\frac{a^{2}+1}{4}\left ( \frac{1}{a}+\frac{c}{ab} \right )\)
Theo dõi (0) 1 Trả lời -
Tìm giá trị lớn nhất của biểu thức \(P=\frac{x^2}{2x^2+2yz+1}+\frac{y^2}{2y^2+2xz+1}+\sqrt{x+y}\)
bởi Nguyen Ngoc 06/02/2017
Cho x, y, z là các số thực không âm thỏa mãn x2+y2+z2=1 . Tìm giá trị lớn nhất của biểu thức \(P=\frac{x^2}{2x^2+2yz+1}+\frac{y^2}{2y^2+2xz+1}+\sqrt{x+y}\)
Theo dõi (0) 1 Trả lời -
Cho các số dương x, y, z thỏa mãn điều kiện xy + yz + zx = xyz. Chứng minh rằng:
\(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\geq \sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)Theo dõi (0) 1 Trả lời -
Tìm giá trị lớn nhất của biểu thức \(P=x^3+y^3+z^3\)
bởi Hoai Hoai 07/02/2017
Cho ba số thực x, y, z thay đổi thỏa mãn \(\left\{\begin{matrix} x+y+z=0\\ x^2+y^2+z^2=2 \end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức \(P=x^3+y^3+z^3\)
Theo dõi (0) 1 Trả lời -
Tìm giá trị lớn nhất của biểu thức: \(P=\frac{1}{2\sqrt{x^2+y^2+z^2-2(2x+y-3)}}-\frac{1}{y(x-1)(z+1)}\)
bởi Đào Thị Nhàn 08/02/2017
Cho các số thực x, y, z thỏa mãn x > 2, y > 1, z > 0. Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{1}{2\sqrt{x^2+y^2+z^2-2(2x+y-3)}}-\frac{1}{y(x-1)(z+1)}\)Theo dõi (0) 1 Trả lời -
Hãy xác định khối lượng thức ăn mỗi loại cần phải mua để tổng số tiền mua ít nhất nhưng vẫn đáp ứng được nhu cầu dinh dưỡng mỗi ngày của gia súc
bởi Sasu ka 06/02/2017
Giả sử yêu cầu tối thiểu mỗi ngày về các chất dinh dưỡng đạm, đường, khoáng cho một loại gia súc tương ứng là 10g, 6g, 7g. Cho biết hàm lượng các chất dinh dưỡng trên có trong 1g thức ăn A, B và giá mua 1kg thức ăn mỗi loại được cho trong bảng sau:
Hãy xác định khối lượng thức ăn mỗi loại cần phải mua để tổng số tiền mua ít nhất nhưng vẫn đáp ứng được nhu cầu dinh dưỡng mỗi ngày của gia súc.
Theo dõi (0) 1 Trả lời -
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{(a+1)^2}+\frac{4b^2}{(1+2b^2)^2}+\frac{8}{(c+3)^2}\)
bởi minh thuận 07/02/2017
Cho a, b, c là các số thực không âm thỏa mãn \(a^b^+c^2b^2+1\leq 3b\). Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{1}{(a+1)^2}+\frac{4b^2}{(1+2b^2)^2}+\frac{8}{(c+3)^2}\)Theo dõi (0) 1 Trả lời -
Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f(x)=x-3+\frac{4}{x-1}\) trên đoạn [2;5]
bởi Việt Long 07/02/2017
Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f(x)=x-3+\frac{4}{x-1}\) trên đoạn [2;5]
Theo dõi (0) 1 Trả lời