RANDOM
AMBIENT
Banner-Video
VIDEO

Tìm giá trị lớn nhất của biểu thức: \(P=\frac{1}{2\sqrt{x^2+y^2+z^2-2(2x+y-3)}}-\frac{1}{y(x-1)(z+1)}\)

Cho các số thực x, y, z thỏa mãn x > 2, y > 1, z > 0. Tìm giá trị lớn nhất của biểu thức:
  \(P=\frac{1}{2\sqrt{x^2+y^2+z^2-2(2x+y-3)}}-\frac{1}{y(x-1)(z+1)}\)

  bởi Đào Thị Nhàn 08/02/2017
ADSENSE
QUẢNG CÁO

Câu trả lời (1)

  • Đặt \(a = x - 2, b= y - 1, c = z \Rightarrow a,b,c>0\)
    \(P=\frac{1}{2\sqrt{a^2+b^2+c^2+1}}-\frac{1}{(a+1)(a+1)(c+1)}\)

    Ta có \(a^2+b^2+c^2+1\geq \frac{(a+b)^2}{2}+\frac{(c+1)^2}{2}\geq \frac{1}{4}(a+b+c+1)^2\)
    Dấu “=” xảy ra khi a = b = c = 1
    Mặt khác \((a+1)(b+1)(c+1)\leq \frac{(a+b+c+3)^3}{27}\)

    Khi đó \(P\leq \frac{1}{a+b+c+1}-\frac{27}{(a+b+c+3)^3}\). Dấu “=” xảy ra khi a=b=c=1
    Đặt \(t=a+b+c+1> 1\). Khi đó \(P\leq \frac{1}{t}-\frac{27}{(t+2)^3},t>1\)

    \(f(t)=\frac{1}{t}-\frac{27}{(t+2)^3},t>1;f'(t)=-\frac{1}{t^2}+\frac{81}{(t+2)^4}=\frac{81t^2-(t+2)^4}{t^2(t+2)^4}\)
    Xét \(f'(t)=0\Leftrightarrow 81t^2-(t+2)^4=0\Leftrightarrow t^2-5t+4=0\Leftrightarrow t=4 \ (do \ t>1)\)
    \(\lim_{x\rightarrow +\infty }f(t)=0\)
    Bảng biến thiên

    Từ BBT Ta có \(max \ f(x)=f(4)=\frac{1}{8}\)
    Vậy \(max \ P=f(4)=\frac{1}{8}\Leftrightarrow \left\{\begin{matrix} a=b=c=1\\ a+b+c+1=4 \end{matrix}\right.\) \(\Leftrightarrow a=b=c=1\Rightarrow x=3;y=2;z=1\)
     

      bởi Phan Thiện Hải 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy

 

 
 

Các câu hỏi có liên quan

YOMEDIA