RANDOM
AMBIENT
Banner-Video
VIDEO

Cho các số dương x, y, z thỏa mãn điều kiện xy + yz + zx = xyz

Cho các số dương x, y, z thỏa mãn điều kiện xy + yz + zx = xyz. Chứng minh rằng:
\(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\geq \sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)

  bởi Đặng Ngọc Trâm 07/02/2017
ADSENSE
QUẢNG CÁO

Câu trả lời (1)

  • Đặt \(a=\frac{1}{x}, b=\frac{1}{y},z=\frac{1}{z}\Rightarrow a,b,c>0\) và a+ b+ c=1
    Bất đẳng thức cần chứng minh tương đương
    \(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\geq \sqrt{ab}+\sqrt{bc}+\sqrt{ac}+1\)
    Thật vậy
    \(\sqrt{a+bc}=\sqrt{a(a+b+c)+bc}=\sqrt{a^2+a(b+c)+bc}\geq \sqrt{a^2+2a\sqrt{bc}+bc}\)
    \(\Rightarrow \sqrt{a+bc}\geq \sqrt{(a+\sqrt{bc})^2}=a+\sqrt{bc}\)
    Tương tự
     \(\sqrt{b+ac}\geq b+\sqrt{ac}\)
    \(\sqrt{c+ab}\geq c+\sqrt{ab}\)
     Cộng theo vế các bất đẳng thức trên ta được:
    \(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\geq \sqrt{ab}+\sqrt{bc}+\sqrt{ac}+a+b+c\)
    \(\Leftrightarrow \sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\geq \sqrt{ab}+\sqrt{bc}+\sqrt{ac}+1\Rightarrow\) đpcm
    Dấu đẳng thức xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)

      bởi May May 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy

 

 
 

Các câu hỏi có liên quan

YOMEDIA