OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 5 trang 121 SGK Giải tích 12

Giải bài 5 tr 121 sách GK Toán GT lớp 12

Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox. Đặt  \(\widehat{POA}=\alpha\) và \(OM=R, \left ( 0\leq \alpha \leq \frac{\pi }{3}, R>0 \right )\).

Gọi V là khối tròn xoay thu được khi quay tam giác đó xung quanh Ox (H.63).

a) Tính thể tích của V theo α và R.      

b) Tìm \(\small \alpha\) sao cho thể tích V là lớn nhất.  

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 5

Câu a:

Ta có: \(OP=R.cos\alpha ; PM=R.sin\alpha\)

⇒ Diện tích đáy B của khối tròn xoay V là: \(B= \pi .PM^2=\pi .R^2.sin^2\alpha .\)

Theo công thức (4) ta có thể tích của khối tròn xoay V là: 

\(V=\frac{1}{3}B.OP=\frac{1}{3}.R.cos\alpha .\pi .R^2.sin^2\alpha\)

\(=\frac{1}{3}\pi .R^3.cos\alpha .sin^2\alpha =\frac{1}{3}\pi .R^3(cos\alpha -cos^3\alpha )\)

Với \(=\left ( 0\leq \alpha \leq \frac{\pi }{3} \right )\)

Câu b:

Ta có V lớn nhất \(\Leftrightarrow cos\alpha -cos^3\alpha\) lớn nhất.

Xét hàm số \(f(t)=t-t^3(t=cos\alpha )\). Khi \(\alpha \in \left ( 0;\frac{\pi }{3} \right )\) thì \(t \in \left ( \frac{1}{2};1\right )\)

Ta có: \(f'(t) = 1 - 3{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}
t = \frac{1}{{\sqrt 3 }}\\
t = \frac{1}{2}
\end{array} \right.\)

Ta có bảng biến thiên:

⇒ f(t) lớn nhất bằng \(\frac{2}{3\sqrt{3}}\) khi \(t=\frac{1}{\sqrt{3}}\)

Hay \(cos \alpha -cos^3\alpha\) lớn nhất: \(\frac{2}{3\sqrt{3}}\) đạt được khi \(cos\alpha =\frac{1}{\sqrt{3}}\)

Vậy \(V_{max}=\frac{2\pi \sqrt{3}}{27}R^3\) khi \(cos\alpha =\frac{1}{\sqrt{3}}\).

-- Mod Toán 12 HỌC247

Video hướng dẫn giải bài 5 SGK

Nếu bạn thấy hướng dẫn giải Bài tập 5 trang 121 SGK Giải tích 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF