Giải bài 2.29 tr 63 SBT Hình học 12
Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác A, ta được tứ diện SABC.
a) Xác định tâm mặt cầu ngoại tiếp tứ diện SABC.
b) Tính bán kính của mặt cầu ngoại tiếp tứ diện SABC trong trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc bằng 300.
Hướng dẫn giải chi tiết
a) Gọi I là trung điểm của cạnh AB.
Vì tam giác ABC vuông cân tại C nên ta có IA = IB = IC.
Vậy I là tâm đường tròn ngoại tiếp tam giác ABC. Do đó, tâm mặt cầu ngoại tiếp tứ diện SABC phải nằm trên đường thẳng d’ vuông góc với mặt phẳng (ABC) tại I.
Ta suy ra d’ // d. Do đó d’ cắt SB tại trung điểm O của đoạn SB. Ta có OB = OS = OA = OC và như vậy O là tâm đường tròn ngoại tiếp tứ diện SABC.
b) Trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc 300 thì góc của hai mặt phẳng đó chính là góc \(\widehat {SCA}\).
Thật vậy, vì SA ⊥ (ABC) mà AC ⊥ CB nên ta có SC ⊥ CB. Do đó \(\widehat {SCA} = {30^0}\).
Vì AB = 2a nên ta có \(AC = a\sqrt 2 \) ta suy ra \(SA = AC.\tan {30^0} = a\sqrt 2 .\frac{{\sqrt 3 }}{3} = \frac{{a\sqrt 6 }}{3}\)
Gọi r là bán kính mặt cầu ngoại tiếp tứ diện khi ˆSCA=300 .
Ta có \(r = \frac{{SB}}{2} = OA = OB = OC = {\rm{OS}}\), trong đó SB2 = SA2 + AB2
Vậy \(S{B^2} = \frac{{6{a^2}}}{9} + 4{a^2} = \frac{{42{a^2}}}{9}\)
Do đó, \(SB = \frac{{a\sqrt {42} }}{3}\)
Ta suy ra \(r = \frac{{SB}}{2} = \frac{{a\sqrt {42} }}{6}\).
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 2.27 trang 62 SBT Hình học 12
Bài tập 2.28 trang 62 SBT Hình học 12
Bài tập 2.30 trang 63 SBT Hình học 12
Bài tập 2.31 trang 63 SBT Hình học 12
Bài tập 2.32 trang 63 SBT Hình học 12
Bài tập 2.33 trang 64 SBT Hình học 12
Bài tập 2.34 trang 64 SBT Hình học 12
Bài tập 2.35 trang 64 SBT Hình học 12
Bài tập 2.36 trang 64 SBT Hình học 12
Bài tập 2.37 trang 64 SBT Hình học 12
Bài tập 3.38 trang 64 SBT Hình học 12
Bài tập 2.39 trang 65 SBT Hình học 12
Bài tập 2.40 trang 65 SBT Hình học 12
Bài tập 2.41 trang 65 SBT Hình học 12
Bài tập 2.42 trang 65 SBT Hình học 12
Bài tập 2.43 trang 65 SBT Hình học 12
Bài tập 2.44 trang 66 SBT Hình học 12
Bài tập 2.45 trang 66 SBT Hình học 12
Bài tập 2.46 trang 66 SBT Hình học 12
Bài tập 2.47 trang 66 SBT Hình học 12
Bài tập 2.48 trang 66 SBT Hình học 12
Bài tập 2.49 trang 66 SBT Hình học 12
Bài tập 1 trang 63 SGK Hình học 12 NC
Bài tập 2 trang 63 SGK Hình học 12 NC
Bài tập 3 trang 63 SGK Hình học 12 NC
Bài tập 4 trang 63 SGK Hình học 12 NC
Bài tập 5 trang 63 SGK Hình học 12 NC
Bài tập 6 trang 63 SGK Hình học 12 NC
Bài tập 1 trang 63 SGK Hình học 12 NC
Bài tập 2 trang 64 SGK Hình học 12 NC
Bài tập 3 trang 64 SGK Hình học 12 NC
Bài tập 4 trang 64 SGK Hình học 12 NC
Bài tập 5 trang 64 SGK Hình học 12 NC
Bài tập 6 trang 65 SGK Hình học 12 NC
Bài tập 7 trang 65 SGK Hình học 12 NC
Bài tập 8 trang 65 SGK Hình học 12 NC
Bài tập 9 trang 65 SGK Hình học 12 NC
Bài tập 10 trang 65 SGK Hình học 12 NC
Bài tập 11 trang 66 SGK Hình học 12 NC
Bài tập 12 trang 66 SGK Hình học 12 NC
Bài tập 13 trang 66 SGK Hình học 12 NC
Bài tập 14 trang 66 SGK Hình học 12 NC
Bài tập 15 trang 66 SGK Hình học 12 NC
Bài tập 16 trang 67 SGK Hình học 12 NC
Bài tập 17 trang 67 SGK Hình học 12 NC
Bài tập 18 trang 67 SGK Hình học 12 NC
Bài tập 19 trang 67 SGK Hình học 12 NC
Bài tập 20 trang 67 SGK Hình học 12 NC
Bài tập 21 trang 67 SGK Hình học 12 NC
Bài tập 22 trang 68 SGK Hình học 12 NC
Bài tập 23 trang 68 SGK Hình học 12 NC
Bài tập 24 trang 68 SGK Hình học 12 NC
-
Thiết diện qua trục của một hình trụ là hình vuông cạnh \(2a\). Gọi \({S_1}\) và \({S_2}\) lần lượt là diện tích xung quanh, diện tích toàn phần của hình trụ. Chọn kết luận đúng trong các kết luận sau:
bởi Anh Nguyễn 06/06/2021
A. \(4{S_1} = 3{S_2}.\)
B. \(3{S_1} = 2{S_2}.\)
C. \(2{S_1} = {S_2}.\)
D.\(2{S_1} = 3{S_2}.\)
Theo dõi (0) 1 Trả lời -
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(A\) , với \(AB = a\). Góc giữa \(A'B\) và mặt phẳng đáy bằng \(45^\circ \). Diện tích xung quanh của hình trụ ngoại tiếp lăng trụ \(ACB.A'B'C'\) bằng
bởi Lê Tường Vy 05/06/2021
A. \(\pi {a^2}.\)
B.\(\sqrt 3 \pi {a^2}.\)
C. \(2\pi {a^2}.\)
D. \(\sqrt 2 \pi {a^2}.\)
Theo dõi (0) 1 Trả lời -
Cho hình chữ nhật \(ABCD\) có \(AB = 3{\rm{ cm }},AD = 5{\rm{ cm}}\). Thể tích tích khối trụ hình thành được khi quay hình chữ nhật \(ABCD\) quanh đoạn \(AB\) bằng
bởi Sasu ka 06/06/2021
A. \(25\pi {\rm{ c}}{{\rm{m}}^3}.\)
B. \(75\pi {\rm{ c}}{{\rm{m}}^3}.\)
C. \(50\pi {\rm{ c}}{{\rm{m}}^3}.\)
D. \(45\pi {\rm{ c}}{{\rm{m}}^3}.\)
Theo dõi (0) 1 Trả lời -
Cho một hình nón \(\left( N \right)\) sinh bởi một tam giác đều cạnh \(a\) khi quay quanh một đường cao. Diện tích xung quanh của hình nón đó bằng
bởi lê Phương 06/06/2021
A. \(\dfrac{{\pi {a^2}}}{4}\).
B. \(\dfrac{{\pi {a^2}}}{2}\).
C. \(\dfrac{{\pi {a^2}\sqrt 3 }}{4}\).
D. \(\pi {a^2}\).
Theo dõi (0) 1 Trả lời