OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 5 trang 63 SGK Hình học 12 NC

Bài tập 5 trang 63 SGK Hình học 12 NC

Cho tam giác ABC vuông tại A, AB = c, AC = b . Gọi V1, V2, V3 là thể tích các khối tròn xoay sinh bởi tam giác đó (kể cả các điểm trong) khi lần lượt quay quanh AB, AC, BC.

a) Tính V1, V2, V3 theo b, c

b) Chứng minh rằng \(\frac{1}{{V_3^2}} = \frac{1}{{V_1^2}} + \frac{1}{{V_2^2}}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) Khi quay tam giác ABC quanh AB ta được khối nón có chiều cao AB = c và bán kính đáy AC = b nên có thể tích \({V_1} = \frac{1}{3}\pi c{b^2}\)

Tương tự khi quay tam giác ABC quanh AC ta được khối nón có thể tích \({V_2} = \frac{1}{3}\pi b{c^2}\)

Gọi AH là chiều cao của tam giác ABC. Khi quay tam giác ABC quanh BC ta được hai khối nón sinh bởi hai tam giác ABH và ACH.

Khi đó ta có 

\(\begin{array}{*{20}{l}}
\begin{array}{l}
{V_3} = \frac{1}{3}\pi A{H^2}.BH + \frac{1}{3}\pi A{H^2}.CH\\
 = \frac{1}{3}\pi AH.BC
\end{array}\\
\begin{array}{l}
 = \frac{1}{3}\pi {(bc\sqrt {{b^2} + {c^2}} )^2}\sqrt {{b^2} + {c^2}} \\
 = \frac{1}{3}\frac{{\pi {b^2}{c^2}}}{{\sqrt {{b^2} + {c^2}} }}
\end{array}
\end{array}\)

b) Ta có:

\(\begin{array}{*{20}{l}}
{\frac{1}{{V_3^2}} = \frac{{9({b^2} + {c^2})}}{{\pi {b^4}{c^4}}}}\\
\begin{array}{l}
\frac{1}{{V_1^2}} + \frac{1}{{V_2^2}} = \frac{9}{{\pi {c^2}{b^4}}} + \frac{9}{{\pi {b^2}{c^4}}}\\
 = \frac{{9({b^2} + {c^2})}}{{\pi {b^4}{c^4}}} = \frac{1}{{V_3^2}}
\end{array}
\end{array}\)

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 5 trang 63 SGK Hình học 12 NC HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF