Giải bài 2.42 tr 65 SBT Hình học 12
Cho mặt cầu S(O;R) và mặt phẳng \(\left( \alpha \right)\). Gọi d là khoảng cách từ O tới \(\left( \alpha \right)\). Khi d < R thì mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính bằng:
A. \(\sqrt {{R^2} + {d^2}} \)
B. \(\sqrt {{R^2} - {d^2}} \)
C. \(\sqrt {Rd} \)
D. \(\sqrt {{R^2} - 2{d^2}} \)
Hướng dẫn giải chi tiết
Tam giác OHA vuông tại H nên \(r = HA = \sqrt {O{A^2} - O{H^2}} \).
Chọn B.
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 2.40 trang 65 SBT Hình học 12
Bài tập 2.41 trang 65 SBT Hình học 12
Bài tập 2.43 trang 65 SBT Hình học 12
Bài tập 2.44 trang 66 SBT Hình học 12
Bài tập 2.45 trang 66 SBT Hình học 12
Bài tập 2.46 trang 66 SBT Hình học 12
Bài tập 2.47 trang 66 SBT Hình học 12
Bài tập 2.48 trang 66 SBT Hình học 12
Bài tập 2.49 trang 66 SBT Hình học 12
Bài tập 1 trang 63 SGK Hình học 12 NC
Bài tập 2 trang 63 SGK Hình học 12 NC
Bài tập 3 trang 63 SGK Hình học 12 NC
Bài tập 4 trang 63 SGK Hình học 12 NC
Bài tập 5 trang 63 SGK Hình học 12 NC
Bài tập 6 trang 63 SGK Hình học 12 NC
Bài tập 1 trang 63 SGK Hình học 12 NC
Bài tập 2 trang 64 SGK Hình học 12 NC
Bài tập 3 trang 64 SGK Hình học 12 NC
Bài tập 4 trang 64 SGK Hình học 12 NC
Bài tập 5 trang 64 SGK Hình học 12 NC
Bài tập 6 trang 65 SGK Hình học 12 NC
Bài tập 7 trang 65 SGK Hình học 12 NC
Bài tập 8 trang 65 SGK Hình học 12 NC
Bài tập 9 trang 65 SGK Hình học 12 NC
Bài tập 10 trang 65 SGK Hình học 12 NC
Bài tập 11 trang 66 SGK Hình học 12 NC
Bài tập 12 trang 66 SGK Hình học 12 NC
Bài tập 13 trang 66 SGK Hình học 12 NC
Bài tập 14 trang 66 SGK Hình học 12 NC
Bài tập 15 trang 66 SGK Hình học 12 NC
Bài tập 16 trang 67 SGK Hình học 12 NC
Bài tập 17 trang 67 SGK Hình học 12 NC
Bài tập 18 trang 67 SGK Hình học 12 NC
Bài tập 19 trang 67 SGK Hình học 12 NC
Bài tập 20 trang 67 SGK Hình học 12 NC
Bài tập 21 trang 67 SGK Hình học 12 NC
Bài tập 22 trang 68 SGK Hình học 12 NC
Bài tập 23 trang 68 SGK Hình học 12 NC
Bài tập 24 trang 68 SGK Hình học 12 NC
-
Cho hình trụ có bán kính đáy \(r\), trục \(OO' = 2r\) và mặt cầu đường kính \(OO'\). Hãy so sánh thể tích khối trụ và thể tích khối cầu được tạo nên bởi hình trụ và mặt cầu đã cho.
bởi Trần Hoàng Mai 06/06/2021
Cho hình trụ có bán kính đáy \(r\), trục \(OO' = 2r\) và mặt cầu đường kính \(OO'\). Hãy so sánh thể tích khối trụ và thể tích khối cầu được tạo nên bởi hình trụ và mặt cầu đã cho.
Theo dõi (0) 1 Trả lời -
Cho hình trụ có bán kính đáy \(r\), trục \(OO' = 2r\) và mặt cầu đường kính \(OO'\). Hãy so sánh diện tích mặt cầu và diện tích xung quanh của hình trụ đó.
bởi May May 06/06/2021
Cho hình trụ có bán kính đáy \(r\), trục \(OO' = 2r\) và mặt cầu đường kính \(OO'\). Hãy so sánh diện tích mặt cầu và diện tích xung quanh của hình trụ đó.
Theo dõi (0) 1 Trả lời -
Cho hình vuông \(ABCD\) cạnh \(a\). Từ tâm \(O\) của hình vuông dựng đường thẳng \(\Delta\) vuông góc với mặt phẳng \((ABCD)\). Trên \(\Delta\) lấy điểm \(S\) sao cho \(OS ={a \over 2}\). Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp \(S.ABCD\). Tính diện tích của mặt cầu và thể tích của khối cầu được tạo nên bởi mặt cầu đó.
bởi Phung Thuy 06/06/2021
Cho hình vuông \(ABCD\) cạnh \(a\). Từ tâm \(O\) của hình vuông dựng đường thẳng \(\Delta\) vuông góc với mặt phẳng \((ABCD)\). Trên \(\Delta\) lấy điểm \(S\) sao cho \(OS ={a \over 2}\). Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp \(S.ABCD\). Tính diện tích của mặt cầu và thể tích của khối cầu được tạo nên bởi mặt cầu đó.
Theo dõi (0) 1 Trả lời -
Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(H\) là hình chiếu vuông góc của đỉnh \(A\) xuống mặt phẳng \((BCD)\). Tính diện tích xung quanh và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác \(BCD\) và chiều cao \(AH\).
bởi thúy ngọc 06/06/2021
Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(H\) là hình chiếu vuông góc của đỉnh \(A\) xuống mặt phẳng \((BCD)\). Tính diện tích xung quanh và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác \(BCD\) và chiều cao \(AH\).
Theo dõi (0) 1 Trả lời