OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 2.25 trang 62 SBT Hình học 12

Giải bài 2.25 tr 62 SBT Hình học 12

Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và có đường cao h. 

a) Một hình trụ có các đường tròn đáy tiếp xúc với các cạnh của tam giác đáy được gọi là hình trụ nội tiếp trong lăng trụ. Hãy tính diện tích xung quanh của hình trụ nội tiếp đó.

b) Gọi I là trung điểm của cạnh BC. Đường thẳng A’I cắt hình trụ nội tiếp nói trên theo một đoạn thẳng. Tính độ dài đoạn thẳng đó.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) Hình trụ nội tiếp trong lăng trụ tam giác đều có đường tròn đáy tiếp xúc tại trung điểm các cạnh của tam giác đáy. Gọi I là trung điểm của cạnh BC, r là bán kính đáy của hình trụ  nội tiếp trong lăng trụ, ta có: \(AI = \frac{{a\sqrt 3 }}{2}\).

Do đó, \(r = \frac{{a\sqrt 3 }}{6}\)

Ta có diện tích xung quanh của hình trụ nội tiếp lăng trụ là:

\({S_{xq}} = 2\pi rl = 2\pi \frac{{a\sqrt 3 }}{6}.h = \frac{{\sqrt 3 \pi ah}}{3}\)

b) Ta có mặt phẳng (AA’I) là mặt phẳng qua trục hình trụ.

Mặt phẳng này cắt hình trụ theo thiết diện là hình chữ nhật IKK’I’.

Đoạn A’I cắt KK’ tại M nên cắt hình trụ theo đoạn IM.

Ta có: \(\frac{{KM}}{{AA'}} = \frac{{IK}}{{IA}} = \frac{2}{3}\)

Xét tam giác vuông IKM ta có: 

\(I{M^2} = I{K^2} + K{M^2}\) \( = \frac{{3{a^2}}}{9} + \frac{{4{h^2}}}{9} = \frac{{3{a^2} + 4{h^2}}}{9}\)

Vậy \(IM = \frac{{\sqrt {3{a^2} + 4{h^2}} }}{3}\).

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 2.25 trang 62 SBT Hình học 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Bài tập 17 trang 54 SGK Hình học 12

Bài tập 18 trang 54 SGK Hình học 12

Bài tập 2.26 trang 62 SBT Hình học 12

Bài tập 2.27 trang 62 SBT Hình học 12

Bài tập 2.28 trang 62 SBT Hình học 12

Bài tập 2.29 trang 63 SBT Hình học 12

Bài tập 2.30 trang 63 SBT Hình học 12

Bài tập 2.31 trang 63 SBT Hình học 12

Bài tập 2.32 trang 63 SBT Hình học 12

Bài tập 2.33 trang 64 SBT Hình học 12

Bài tập 2.34 trang 64 SBT Hình học 12

Bài tập 2.35 trang 64 SBT Hình học 12

Bài tập 2.36 trang 64 SBT Hình học 12

Bài tập 2.37 trang 64 SBT Hình học 12

Bài tập 3.38 trang 64 SBT Hình học 12

Bài tập 2.39 trang 65 SBT Hình học 12

Bài tập 2.40 trang 65 SBT Hình học 12

Bài tập 2.41 trang 65 SBT Hình học 12

Bài tập 2.42 trang 65 SBT Hình học 12

Bài tập 2.43 trang 65 SBT Hình học 12

Bài tập 2.44 trang 66 SBT Hình học 12

Bài tập 2.45 trang 66 SBT Hình học 12

Bài tập 2.46 trang 66 SBT Hình học 12

Bài tập 2.47 trang 66 SBT Hình học 12

Bài tập 2.48 trang 66 SBT Hình học 12

Bài tập 2.49 trang 66 SBT Hình học 12

Bài tập 1 trang 63 SGK Hình học 12 NC

Bài tập 2 trang 63 SGK Hình học 12 NC

Bài tập 3 trang 63 SGK Hình học 12 NC

Bài tập 4 trang 63 SGK Hình học 12 NC

Bài tập 5 trang 63 SGK Hình học 12 NC

Bài tập 6 trang 63 SGK Hình học 12 NC

Bài tập 1 trang 63 SGK Hình học 12 NC

Bài tập 2 trang 64 SGK Hình học 12 NC

Bài tập 3 trang 64 SGK Hình học 12 NC

Bài tập 4 trang 64 SGK Hình học 12 NC

Bài tập 5 trang 64 SGK Hình học 12 NC

Bài tập 6 trang 65 SGK Hình học 12 NC

Bài tập 7 trang 65 SGK Hình học 12 NC

Bài tập 8 trang 65 SGK Hình học 12 NC

Bài tập 9 trang 65 SGK Hình học 12 NC

Bài tập 10 trang 65 SGK Hình học 12 NC

Bài tập 11 trang 66 SGK Hình học 12 NC

Bài tập 12 trang 66 SGK Hình học 12 NC

Bài tập 13 trang 66 SGK Hình học 12 NC

Bài tập 14 trang 66 SGK Hình học 12 NC

Bài tập 15 trang 66 SGK Hình học 12 NC

Bài tập 16 trang 67 SGK Hình học 12 NC

Bài tập 17 trang 67 SGK Hình học 12 NC

Bài tập 18 trang 67 SGK Hình học 12 NC

Bài tập 19 trang 67 SGK Hình học 12 NC

Bài tập 20 trang 67 SGK Hình học 12 NC

Bài tập 21 trang 67 SGK Hình học 12 NC

Bài tập 22 trang 68 SGK Hình học 12 NC

Bài tập 23 trang 68 SGK Hình học 12 NC

Bài tập 24 trang 68 SGK Hình học 12 NC

Bài tập 25 trang 68 SGK Hình học 12 NC

Bài tập 26 trang 68 SGK Hình học 12 NC

NONE
OFF