OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 4.81 trang 125 SBT Toán 10

Giải bài 4.81 tr 125 SBT Toán 10

Tìm a và b để bất phương trình: (x - 2a + b - 1)(x + a - 2b + 1) ≤ 0 có tập nghiệm là đoạn [0; 2]

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

 Tập nghiệm của bất phương trình đã cho là đoạn [2a - b + 1; - a + 2b - 1] (nếu 2a - 6 + 1 ≤ -a + 26 - 1) hoặc là đoạn [-a + 26 - 1 ; 2a - 6 + 1] (nếu -a + 2b - 1 ≤ 2a - 6 - 1)

Do đó để tập nghiệm của bất phương trình đã cho là đoạn [0;2], điều kiện cần và đủ là:

\(\left\{ \begin{array}{l}
2a - b + 1 = 2\\
 - a + 2b - 1 = 0
\end{array} \right.\left( 1 \right)\) hoặc \(\left\{ \begin{array}{l}
2a - b + 1 = 0\\
 - a + 2b - 1 = 2
\end{array} \right.\left( 2 \right)\)

Giải (1) ta được a = b = 1. Giải hệ (2) ta được a = 1/3, b = 5/3

Vậy a = b = 1 hoặc a = \(\frac{1}{3}\), b = \(\frac{5}{3}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4.81 trang 125 SBT Toán 10 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF