OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm min của E=a+b+c+1/a+1/b+1/c

Cho a,b,c > 0 và a+ b + c \(\le\dfrac{3}{2}\). Tìm Min của \(E=a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

@Phùng Khánh Linh @Akai Haruma ...... giúp với

  bởi thuy tien 05/11/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • E = a + \(\dfrac{1}{4a}+b+\dfrac{1}{4b}+c+\dfrac{1}{4c}+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

    áp dụng bdt cosi cho cac so duong co:

    \(a+\dfrac{1}{4a}\ge2\sqrt{a.\dfrac{1}{4a}}\Leftrightarrow a+\dfrac{1}{4a}\ge1\)

    \(b+\dfrac{1}{4b}\ge1,c+\dfrac{1}{4c}\ge1\)

    dấu = xảy ra khi a=b=c = 1/2

    CM: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{\dfrac{3}{2}}\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6\)\(\Rightarrow\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9}{2}\)\(\Rightarrow E\ge3+\dfrac{9}{2}\Rightarrow E\ge\dfrac{15}{2}\)

    Vậy min E= 15/2 khi a=b=c=1/2

      bởi Nguyễn Phương Mai 05/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF