OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Toán 12 Bài 2: Hàm số lũy thừa


Nội dung bài học sẽ giúp các em nắm được các yếu tố liên quan đến hàm số lũy thừa như khái niệm, tập xác định, tính đợn điệu, cách tính đạo hàm, các dạng đồ thị của hàm số lũy thừa qua đó sẽ tạo nên tảng kiến thức phục vụ cho các em trong quá trình giải các dạng bài tập liên quan đến hàm số lũy thừa.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 
 
 

Tóm tắt lý thuyết

2.1. Khái niệm hàm số luỹ thừa 

- Hàm số luỹ thừa là hàm số có dạng \(y=x^{\alpha}\), trong đó \(\alpha\) là một hằng số tuỳ ý.
Từ định nghĩa các luỹ thừa, ta thấy: 

+ Hàm số \(y=x^n\) với n nguyên dương, xác định với mọi \(x \in \mathbb{R}\).

+ Hàm số \(y=x^n\), với n nguyên âm hoặc n = 0, xác định với mọi \(x \in \mathbb{R}\backslash \left\{ 0 \right\}\).

+ Hàm số \(y=x^{\alpha}\), với \(\alpha\) không nguyên, có tập xác định là tập hợp các số thực dương \(\left( {0; + \infty } \right)\)

- Người ta chứng minh được rằng hàm số lũy thừa liên tục trên tập xác định của nó.

Chú ý: Theo định nghĩa, đẳng thức \(\sqrt[n]{x} = {x^{\frac{1}{n}}}\) chỉ xảy ra nếu \(x>0\) do đó, hàm số \(y=x^\frac{1}{n}\) không đồng nhất với hàm số \(y = \sqrt[n]{x}(n \in {\mathbb{N}^*})\). Chẳng hạn, hàm số \(y = \sqrt[3]{x}\) là hàm số căn bậc ba, xác định với mọi \(x \in \mathbb{R}\); còn hàm số luỹ thừa \(y=x^\frac{1}{3}\) chỉ xác định trên \(\left( {0; + \infty } \right)\).

2.2. Đạo hàm của hàm số luỹ thừa

a) Định lý 

- Hàm số luỹ thừa \(y = {x^\alpha }(\alpha \in \mathbb{R})\) có đạo hàm tại mọi điểm \(x>0\) và \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha - 1}}\).

- Nếu hàm số \(u=u(x)\) nhận giá trị dương và có đạo hàm trên \(J\) thì hàm số \(y = {u^\alpha }(x).\) cũng có đạo hàm trên \(J\) và \(\left( {{u^\alpha }\left( x \right)} \right)' = \alpha .{u^{\alpha - 1}}(x).u'(x)\).

b) Chú ý: 

- Áp dụng định lí trên, ta dễ dàng chứng minh công thức đạo hàm của hàm số căn bậc n sau đây: \(\left( {\sqrt[n]{x}} \right)' = \frac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\) (với mọi \(x>0\) nếu n chẵn, với mọi \(x\ne0\) nếu n lẻ).

- Nếu \(u=u(x)\) là hàm số có đạo hàm trên \(J\) và thoả mãn điều kiện \(u(x)>0\) với mọi \(x \in J\) khi n chẵn, \(u(x)\ne0\) với mọi \(x \in J\) khi n lẻ thì:

\(\left( {\sqrt[n]{{u(x)}}} \right)' = \frac{{u'(x)}}{{n\sqrt[n]{{{u^{n - 1}}(x)}}}}\,\left( {\forall x \in J} \right)\)

Nhận xét: Do \(1^\alpha =1\) với mọi \(\alpha\) nên đồ thị của mọi hàm số lũy thừa đều đi qua điểm (1;1).

2.3. Khảo sát hàm số lũy thừa \(y=x^{\alpha}\)

- Tập xác định của hàm số lũy thừa luôn chưa khoảng \(\left( {0; + \infty } \right)\) với mọi \(\alpha \in \mathbb{R}\). 

- Trong trường hợp tổng quát ta khảo sát hàm số \(y=x^{\alpha}\) trên khoảng này, ta được bảng tóm tắt sau:

- Hình dạng của đồ thị hàm số lũy thừa trong các trường hợp xét trên tập \(\left( {0; + \infty } \right)\):

 

Chú ý: Khi khảo sát hàm số lũy thừa với số mũ cụ thể, ta phải xét hàm số đó trên toàn bộ tập xác định của nó.

VIDEO
YOMEDIA
Trắc nghiệm hay với App HOC247
YOMEDIA

Bài tập minh họa

Ví dụ 1:

Tìm tập xác định của các hàm số sau:

a) \(y=x^6\)

b) \(y=(1-x)^{\sqrt2}\)

c) \(y=(x+2)^{-3}\)

Lời giải: 

a) Hàm số \(y=x^6\) xác định với mọi \(x\in\mathbb{R}\).

Vậy tập xác định của hàm số là \(D=\mathbb{R}.\)

b) Hàm số \(y=(1-x)^{\sqrt2}\) xác định khi \(1 - x > 0 \Leftrightarrow x < 1.\)

Vậy tập xác định của hàm số là \(D = \left( { - \infty ;1} \right)\).

c) Hàm số \(y=(x+2)^{-3}\) xác định khi \(x + 2 \ne 0 \Leftrightarrow x \ne - 2\)

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\) 

Ví dụ 2: 

Tính đạo hàm các hàm số

a) \(y = {x^{\sqrt 2 + 1}}\)

b) \(y = {x^{3\pi }}\)

c) \(y=x^{-0,9}\)

Lời giải:

a) \(y' = - \frac{1}{2}{x^{ - \frac{1}{2} - 1}} = - \frac{1}{2}{x^{ - \frac{3}{2}}} = - \frac{1}{{2\sqrt {{x^3}} }}.\)

b) \(y' = 3\pi .{x^{3\pi - 1}}\).

c) \(y' = - 0,9{x^{ - 0,9 - 1}} = - 0,9{x^{ - 1,9}}.\)

Ví dụ 3:

Tính đạo hàm các hàm số sau:

a) \(y = {(2x + 1)^\pi }\)

b) \(y = {(3{x^2} - 1)^{ - \sqrt 2 }}\)

c) \(y = {\left( {2{x^2} + x - 1} \right)^{\frac{2}{3}}}\)

Lời giải:

a) \(y' = \pi {(2x + 1)^{\pi - 1}}(2x + 1)' = 2\pi {(2x + 1)^{\pi - 1}}.\)

b) \(y' = - \sqrt 2 {\left( {3{x^2} - 1} \right)^{ - \sqrt 2 - 1}}(3{x^2} - 1)' = - 6\sqrt 2 x{(3{x^2} - 1)^{ - \sqrt 2 - 1}}.\)

c) \(y' = \frac{2}{3}{(2{x^2} + x - 1)^{ - \frac{1}{3}}}(4x + 1).\)

ADMICRO

4. Luyện tập Bài 2 Chương 2 Toán 12

Trong bài học Hàm số lũy thừa HỌC247 giới thiệu đến các em những nội dung cơ bản nhất về khái niệm hàm số lũy thừa, đạo hàm của hàm số lũy thừa, khảo sát hàm số lũy thừa. Vận dụng kiến thức đã học để làm một số bài tập liên quan đến hàm số lũy thừa.

4.1 Trắc nghiệm

Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Toán 12 Chương 2 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

4.2 Bài tập SGK

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Chương 2 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.

Bài tập 1 trang 60 SGK Giải tích 12

Bài tập 2 trang 61 SGK Giải tích 12

Bài tập 3 trang 61 SGK Giải tích 12

Bài tập 4 trang 61 SGK Giải tích 12

Bài tập 5 trang 61 SGK Giải tích 12

Bài tập 2.6 trang 104 SBT Toán 12

Bài tập 2.7 trang 104 SBT Toán 12

Bài tập 2.8 trang 104 SBT Toán 12

Bài tập 2.9 trang 104 SBT Toán 12

Bài tập 2.10 trang 104 SBT Toán 12

Bài tập 2.11 trang 104 SBT Toán 12

Bài tập 2.12 trang 104 SBT Toán 12

Bài tập 2.13 trang 104 SBT Toán 12

Bài tập 2.14 trang 104 SBT Toán 12

Bài tập 57 trang 117 SGK Toán 12 NC

Bài tập 58 trang 117 SGK Toán 12 NC

Bài tập 59 trang 117 SGK Toán 12 NC

Bài tập 60 trang 117 SGK Toán 12 NC

Bài tập 61 trang 118 SGK Toán 12 NC

Bài tập 62 trang 118 SGK Toán 12 NC

5. Hỏi đáp Bài 2 Chương 2 Toán 12

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

-- Mod Toán Học 12 HỌC247

NONE
OFF