Bài tập 58 trang 117 SGK Toán 12 NC
Tìm đạo hàm của các hàm số sau:
a) \(y = {\left( {2x + 1} \right)^\pi }\)
b) \(y = 5\sqrt[3]{{{{\ln }^3}5x}}\)
c) \(y = \sqrt[3]{{\frac{{1 + {x^3}}}{{1 - {x^3}}}}}\)
d) \(y = {\left( {\frac{x}{b}} \right)^a}{\left( {\frac{a}{x}} \right)^b}\) với a > 0, b > 0
Hướng dẫn giải chi tiết
a) \(y' = 2\pi {\left( {2x + 1} \right)^{\pi - 1}}\)
b) \(y' = \frac{{{{\left( {{{\ln }^3}5x} \right)}^\prime }}}{{5\sqrt[5]{{{{\left( {{{\ln }^3}5x} \right)}^4}}}}} = \frac{{3{{\ln }^2}5x}}{{5x\sqrt[5]{{{{\ln }^{12}}5x}}}}\)
c) Đặt \(u = \frac{{1 + {x^3}}}{{1 - {x^3}}};y\prime = \frac{{u'}}{{3\sqrt[3]{{{u^2}}}}}\)
\(u' = \frac{{3{x^2}\left( {1 - {x^3}} \right) - 3{x^2}\left( {1 + {x^3}} \right)}}{{{{\left( {1 - {x^3}} \right)}^2}}} = \frac{{6{x^2}}}{{\left( {1 - {x^3}} \right)}}\)
Do đó:
\(\begin{array}{l}
y' = \frac{{2{x^2}}}{{{{\left( {1 - {x^3}} \right)}^2}}}.\frac{1}{{\sqrt[3]{{{{\left( {\frac{{1 + {x^3}}}{{1 - {x^3}}}} \right)}^2}}}}}\\
= \frac{{2{x^2}}}{{\sqrt[3]{{{{\left( {1 - {x^3}} \right)}^4}{{\left( {1 + {x^3}} \right)}^2}}}}}
\end{array}\)
d)
\(\begin{array}{l}
y' = \left[ {{{\left( {\frac{x}{b}} \right)}^a}} \right]{\rm{'}}{\left( {\frac{a}{x}} \right)^b} + {\left( {\frac{x}{b}} \right)^a}\left[ {{{\left( {\frac{a}{x}} \right)}^b}} \right]'\\
= \frac{a}{b}{\left( {\frac{x}{a}} \right)^{a - 1}}{\left( {\frac{a}{x}} \right)^b} + {\left( {\frac{x}{b}} \right)^a}b{\left( {\frac{a}{x}} \right)^{b - 1}}.\left( { - \frac{a}{{{x^2}}}} \right)\\
= {\left( {\frac{x}{b}} \right)^a}{\left( {\frac{a}{x}} \right)^b}\frac{{a - b}}{x}
\end{array}\)
-- Mod Toán 12 HỌC247
Bài tập SGK khác
-
Giải phương trình 2^x*5^x=0.2*(10^x-1)^5
bởi Huyền Trân 12/12/2019
2^x*5^x=0.2*(10^x-1)^5Theo dõi (0) 0 Trả lời -
Tìm tập xác định của hàm số y=(4x^2-1)^-4
bởi Yến Vy 08/12/2019
Theo dõi (0) 2 Trả lời -
Phương trình (căn 3-căn 2)^x+(căn 3+căn 2)^x=(căn 10)^x có tất cả bao nhiêu nghiệm thực?
bởi Lann Anhh 05/12/2019
Theo dõi (0) 0 Trả lời -
Tìm tích số của tất cả các nghiệm của phương trình 7^(x^2-x+3/2)=49 căn 7
bởi Thi Hong Hanh Nguyen 04/12/2019
Theo dõi (0) 2 Trả lời -
ADMICROCâu 24 làm sao v mọi ngườiTheo dõi (0) 1 Trả lời
-
Tìm số nghiệm của phương trình 2^x + 3^x + 4^x+ ... + 2017^x + 2018^x = 2017 − x
bởi Trịnh Phương 09/11/2019
Tìm số nghiệm của phương trình 2^x + 3^x + 4^x+ ... + 2017^x + 2018^x = 2017 − x .
Theo dõi (0) 3 Trả lời