OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 22 trang 19 SGK Toán 9 Tập 2

Giải bài 22 tr 19 sách GK Toán 9 Tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{\begin{matrix} -5x + 2y = 4 & & \\ 6x - 3y =-7 & & \end{matrix}\right.\)

b) \(\left\{\begin{matrix} 2x - 3y = 11& & \\ -4x + 6y = 5 & & \end{matrix}\right.\) 

c) \(\left\{\begin{matrix} 3x - 2y = 10& & \\ x - \dfrac{2}{3}y = 3\dfrac{1}{3} & & \end{matrix}\right.\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 22

Câu a:

Nhân phương trình trên với \(3\), nhân phương trình dưới với \(2\), rồi cộng vế với vế của hai phương trình trong hệ, ta được:

\(\left\{\begin{matrix} -5x + 2y = 4 & & \\ 6x - 3y =-7 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} -15x + 6y = 12& & \\ 12x - 6y =-14 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -3x = -2& & \\ -15x + 6y = 12& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = \dfrac{2}{3}& & \\ 6y = 12 + 15 . x& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x = \dfrac{2}{3}& & \\ 6y = 12+15.\dfrac{2}{3}& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = \dfrac{2}{3}& & \\ 6y = 22& & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} x = \dfrac{2}{3}& & \\ y =\dfrac{11}{3}& & \end{matrix}\right.\)

Vậy hệ đã cho có nghiệm duy nhất là \({\left(\dfrac{2}{3}; \dfrac{11}{3}  \right)}\)

Câu b:

Nhân hai vế phương trình trên với \(2\) rồi cộng hai vế của hai phương trình với nhau, ta được:

\(\left\{\begin{matrix} 2x - 3y = 11& & \\ -4x + 6y = 5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 4x - 6y = 22& & \\ -4x + 6y = 5& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 4x - 6y = 22& & \\ 4x - 6y = -5& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 4x - 6y = 22& & \\ 0x - 0y = 27\ (vô\ lý) & & \end{matrix}\right.\)

Vậy hệ phương trình vô nghiệm.

Câu c:

Đổi hỗn số về phân số rồi nhân hai vế của phương trình dưới với \(3\) sau đó trừ vế với vế của hai phương trình ta được:

\(\left\{\begin{matrix} 3x - 2y = 10& & \\ x - \dfrac{2}{3}y = 3\dfrac{1}{3} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 3x - 2y = 10& & \\ x - \dfrac{2}{3}y = \dfrac{10}{3} & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 3x - 2y = 10& & \\ 3x - 2y = 10 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 0 = 0 (Luôn đúng) & & \\  3x -2y= 10& & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} x \in \mathbb{R} & & \\  y= \dfrac{3x-10}{2}& & \end{matrix}\right.\)

Vậy hệ phương trình có vô số nghiệm. 

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 22 trang 19 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF